Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 76(19): 5732-5742, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496712

RESUMO

PAK4 kinase contributes to signaling pathways controlling cancer cell transformation, invasion, and survival, but its clinicopathological impact has begun to emerge only recently. Here we report that PAK4 overexpression in hepatocellular carcinoma (HCC) conveys aggressive metastatic properties. A novel nuclear splice isoform of PAK4 lacking exon 2 sequences was isolated as part of our studies. By stably overexpressing or silencing PAK4 in HCC cells, we showed that it was critical for their migration. Mechanistic investigations in this setting revealed that PAK4 directly phosphorylated p53 at S215, which not only attenuated transcriptional transactivation activity but also inhibited p53-mediated suppression of HCC cell invasion. Taken together, our results showed how PAK4 overexpression in HCC promotes metastatic invasion by regulating p53 phosphorylation. Cancer Res; 76(19); 5732-42. ©2016 AACR.


Assuntos
Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/metabolismo , Quinases Ativadas por p21/fisiologia , Linhagem Celular Tumoral , Movimento Celular , DNA/metabolismo , Humanos , Metástase Neoplásica , Fosforilação , Serina/metabolismo , Quinases Ativadas por p21/análise
2.
PLoS One ; 8(7): e68843, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894351

RESUMO

Hepatocellular carcinoma (HCC) is one of the major malignancies worldwide and is associated with poor prognosis due to the high incidences of metastasis and tumor recurrence. Our previous study showed that overexpression of p21-activated protein kinase 1 (PAK1) is frequently observed in HCC and is associated with a more aggressive tumor behavior, suggesting that PAK1 is a potential therapeutic target in HCC. In the current study, an allosteric small molecule PAK1 inhibitor, IPA-3, was evaluated for the potential in suppressing hepatocarcinogenesis. Consistent with other reports, inhibition of PAK1 activity was observed in several human HCC cell lines treated with various dosages of IPA-3. Using cell proliferation, colony formation and BrdU incorporation assays, we demonstrated that IPA-3 treatment significantly inhibited the growth of HCC cells. The mechanisms through which IPA-3 treatment suppresses HCC cell growth are enhancement of apoptosis and blockage of activation of NF-κB. Furthermore, our data suggested that IPA-3 not only inhibits the HCC cell growth, but also suppresses the metastatic potential of HCC cells. Nude mouse xenograft assay demonstrated that IPA-3 treatment significantly reduced the tumor growth rate and decreased tumor volume, indicating that IPA-3 can suppress the in vivo tumor growth of HCC cells. Taken together, our demonstration of the potential preclinical efficacy of IPA-3 in HCC provides the rationale for cancer therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , Dissulfetos/farmacologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Naftóis/farmacologia , Quinases Ativadas por p21/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Transporte Proteico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Res ; 72(17): 4394-404, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22728651

RESUMO

AMP-activated protein kinase (AMPK), a biologic sensor for cellular energy status, has been shown to act upstream and downstream of known tumor suppressors. However, whether AMPK itself plays a tumor suppressor role in cancer remains unclear. Here, we found that the α2 catalytic subunit isoform of AMPK is significantly downregulated in hepatocellular carcinoma (HCC). Clinicopathologic analysis revealed that underexpression of AMPK-α2 was statistically associated with an undifferentiated cellular phenotype and poor patient prognosis. Loss of AMPK-α2 in HCC cells rendered them more tumorigenic than control cells both in vitro and in vivo. Mechanistically, ectopic expression of AMPK enhanced the acetylation and stability of p53 in HCC cells. The p53 deacetylase, SIRT1, was phosphorylated and inactivated by AMPK at Thr344, promoting p53 acetylation and apoptosis of HCC cells. Taken together, our findings suggest that underexpression of AMPK is frequently observed in HCC, and that inactivation of AMPK promotes hepatocarcinogenesis by destabilizing p53 in a SIRT1-dependent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sirtuína 1/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Acetilação , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Sirtuína 1/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...