Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 869: 161664, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36681337

RESUMO

The widespread adoption of nuclear energy has increased the amount of radioactive cesium (Cs) that is discharged into waste streams, which can have environmental risks. In this paper, we provide a comprehensive summary of current advances in aqueous Cs removal by employing a bibliometric analysis. We collected 1580 articles related to aqueous Cs treatment that were published on the Web of Science database between 2012 and 2022. By applying bibliometric analysis combined with network analysis, we revealed the research distribution, knowledge base, research hotspots, and cutting-edge technologies in the field of aqueous Cs removal. Our findings indicate that China, Japan, and South Korea are the most productive countries with respect to Cs removal research. In addition, both historic events and environmental threats might have contributed to research in Asian countries having a higher focus on Cs removal as well as strong international cooperation between Asian countries. A detailed keyword analysis reveals the main knowledge base for aqueous Cs removal and highlights the potential of the adsorption-based method for treating Cs contamination. Furthermore, the results reveal that exploration of functional materials is a popular research topic in the field of Cs removal. Since 2012, novel materials, including Prussian blue, graphene oxide, hydrogel and nanocomposites, have been widely investigated because of their high capacity for Cs removal. On the basis of the detailed information, we report the latest research trends on aqueous Cs removal, and propose future research directions and describe the challenges related to effective Cs treatment. This scientometric review provides insights into current research hotspots and cutting-edge trends in addition to contributing to the development of this crucial research field.

2.
Environ Res ; 214(Pt 4): 114085, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35987376

RESUMO

Cesium (Cs) is a byproduct of nuclear bombs, nuclear weapons testing, and nuclear fission in nuclear reactors. Cs can enter the human body through food or air and cause lasting damage. Highly efficient and selective removal of 137Cs from low-level radioactive effluents (LLREs), which contain many radionuclides and dissolved heavy metal species, is imperative for minimizing LLRE volume, and facilitating their final disposal. Prussian blue analogs (PBAs) have received much attention as materials for the removal of radioactive Cs because of their affinity for adsorbing Cs+. In this study, an inexpensive and readily available cyanide-based functional material (PBACu) exhibiting high efficiency and excellent selectivity toward Cs capture was designed through a facile low-temperature co-precipitation process. Nano-PBACu, crystallizing in the cubic space group (Fm-3m (225)), has an average pore size of 6.53 nm; consequently, PBACu can offer abundant atomic occupation sites for capturing and incorporating Cs. Here, the pseudo-second-order kinetic model and Langmuir model fitted well with the adsorption of Cs + on PBACu, with a maximum capture capacity of 95.75 mg/g within 5 min, confirming that PBACu could rapidly capture Cs ions. PBACu strongly and selectively interacted with Cs even in a simulant containing large Na+, NH4+, Ca2+, and Mg2+ ion concentrations in an aqueous solution. The process of Cs + adsorption by cyanide-based functional crystals was confirmed to involve the entry of Cs+ into cyanide-based functional crystals to replace K+ and finally achieve the lattice incorporation of Cs. The current results broaden the lattice theory of radionuclide Cs removal and provide a promising alternative for the immobilization of Cs from radioactive wastewater.


Assuntos
Césio , Cianetos , Adsorção , Césio/química , Humanos , Concentração de Íons de Hidrogênio , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...