Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Chem Asian J ; 19(9): e202400052, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38436107

RESUMO

Aminopeptidases, enzymes with critical roles in human body, are emerging as vital biomarkers for metabolic processes and diseases. Aberrant aminopeptidase levels are often associated with diseases, particularly cancer. Small-molecule probes, such as fluorescent, fluorescent/photoacoustics, bioluminescent, and chemiluminescent probes, are essential tools in the study of aminopeptidases-related diseases. The fluorescent probes provide real-time insights into protein activities, offering high sensitivity in specific locations, and precise spatiotemporal results. Additionally, photoacoustic probes offer signals that are able to penetrate deeper tissues. Bioluminescent and chemiluminescent probes can enhance in vivo imaging abilities by reducing the background. This comprehensive review is focused on small-molecule probes that respond to four key aminopeptidases: aminopeptidase N, leucine aminopeptidase, Pyroglutamate aminopeptidase 1, and Prolyl Aminopeptidase, and their utilization in imaging tumors and afflicted regions. In this review, the design strategy of small-molecule probes, the variety of designs from previous studies, and the opportunities of future bioimaging applications are discussed, serving as a roadmap for future research, sparking innovations in aminopeptidase-responsive probe development, and enhancing our understanding of these enzymes in disease diagnostics and treatment.


Assuntos
Aminopeptidases , Corantes Fluorescentes , Humanos , Aminopeptidases/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Sondas Moleculares/química , Imagem Óptica , Animais , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Neoplasias/diagnóstico por imagem
2.
Biomaterials ; 293: 121955, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565600

RESUMO

Developing chemiluminescence probe with a slow kinetic profile, even a constant emission within analytical time, would improve the analytical sensitivity, but still remains challenging. This work reports a novel strategy to afford long-lasting in vivo imaging by developing a self-assembled chemiluminophore HPQCL-Cl via the introduction of the hydrogen-bond-driven self-assembled dye HPQ to Schaap's dioxetane. Compared with classical chemiluminophore HCL, self-assembled HPQCL-Cl was isolated from the physiological environment, thereby lowering its deprotonation and prolonging its half-life. Based on HPQCL-Cl, the long-lasting in vivo imaging of 9L-lacz tumor was achieved by developing a ß-gal-responsive probe. Its signals remained constant (<5% change) for about 20 min, which may provide a wide time window for the determination of ß-gal. This probe also showed high tumor-to-normal tissue ratio throughout tumor resection, highlighting its potential in image-guided clinical surgery.


Assuntos
Neoplasias , Humanos , Luminescência , Imagem Óptica/métodos , Hidrogênio
3.
Plants (Basel) ; 11(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432892

RESUMO

The Staphylococcus aureus SsbA protein (SaSsbA) is a single-stranded DNA-binding protein (SSB) that is categorically required for DNA replication and cell survival, and it is thus an attractive target for potential antipathogen chemotherapy. In this study, we prepared the stem extract of Sarracenia purpurea obtained from 100% acetone to investigate its inhibitory effect against SaSsbA. In addition, the cytotoxic effects of this extract on the survival, apoptosis, proliferation, and migration of B16F10 melanoma cells were also examined. Initially, myricetin, quercetin, kaempferol, dihydroquercetin, dihydrokaempferol, rutin, catechin, ß-amyrin, oridonin, thioflavin T, primuline, and thioflavin S were used as possible inhibitors against SaSsbA. Of these compounds, dihydrokaempferol and oridonin were capable of inhibiting the ssDNA-binding activity of SaSsbA with respective IC50 values of 750 ± 62 and 2607 ± 242 µM. Given the poor inhibition abilities of dihydrokaempferol and oridonin, we screened the extracts of S. purpurea, Nepenthes miranda, and Plinia cauliflora for SaSsbA inhibitors. The stem extract of S. purpurea exhibited high anti-SaSsbA activity, with an IC50 value of 4.0 ± 0.3 µg/mL. The most abundant compounds in the stem extract of S. purpurea were identified using gas chromatography−mass spectrometry. The top five most abundant contents in this extract were driman-8,11-diol, deoxysericealactone, stigmast-5-en-3-ol, apocynin, and α-amyrin. Using the MOE-Dock tool, the binding modes of these compounds, as well as dihydrokaempferol and oridonin, to SaSsbA were elucidated, and their binding energies were also calculated. Based on the S scores, the binding capacity of these compounds was in the following order: deoxysericealactone > dihydrokaempferol > apocynin > driman-8,11-diol > stigmast-5-en-3-ol > oridonin > α-amyrin. Incubation of B16F10 cells with the stem extract of S. purpurea at a concentration of 100 µg/mL caused deaths at the rate of 76%, reduced migration by 95%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. Overall, the collective data in this study indicate the pharmacological potential of the stem extract of S. purpurea for further medical applications.

4.
Nat Commun ; 13(1): 4174, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854007

RESUMO

Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist.


Assuntos
Adipogenia , Gotículas Lipídicas , Adipogenia/genética , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Camundongos , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
5.
Anal Chem ; 93(16): 6463-6471, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33852265

RESUMO

Aminopeptidase N (APN) is capable of cleaving N-terminal amino acids from peptides with alanine in the N-terminal position and plays a key role in the growth, migration, and metastasis of cancer. However, reliable in situ information is hard to be obtained with the current APN-responsive molecular probes because the released fluorophores are cytoplasmic soluble and thus rapidly depart from the enzymatic reaction sites and spread out all over the cytoplasm. Here, we report a de novo precipitated fluorophore, HBPQ, which is completely insoluble in water and shows strong yellow solid emission when excited with a 405 nm laser. Owing to the controllable solid fluorescence of HBPQ by the protection-deprotection of phenolic hydroxyl, we further utilized HBPQ to design an APN-responsive fluorogenic probe (HBPQ-A) for the imaging of intracellular APN. Importantly, HBPQ-A can not only perform in situ imaging of APN in different organelles (e.g., lysosomes, mitochondria, endoplasmic reticula, and so forth) but also display a stable and indiffusible fluorescent signal for reliable mapping of the distribution of APN in living cells. In addition, through real-time imaging of APN in 4T1 tumors, we found that the fluorescent signal with high fidelity generated by HBPQ-A could remain constant even after 12 h, which further confirmed its diffusion-resistant ability and long-term reliable imaging ability. We believe that the precipitated fluorophore may have great potential for long-term in situ imaging.


Assuntos
Antígenos CD13 , Corantes Fluorescentes , Neoplasias , Fluorescência , Humanos , Sondas Moleculares , Neoplasias/diagnóstico por imagem
6.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602816

RESUMO

Cell membrane-targeted bioimaging is a prerequisite for studying the roles of membrane-associated biomolecules in various physiological and pathological processes. However, long-term in situ bioimaging on the cell membrane with conventional fluorescent probes leads to diffusion into cells from the membrane surface. Therefore, we herein proposed a de novo strategy to construct an antidiffusion probe by integrating a fluorochrome characterized by strong hydrophobicity and low lipophilicity, with an enzyme substrate to meet this challenge. This precipitating fluorochrome HYPQ was designed by conjugating the traditionally strong hydrophobic solid-state fluorochrome 6-chloro-2-(2-hydroxyphenyl) quinazolin-4(3H)-one (HPQ) with a 2-(2-methyl-4H-chromen-4-ylidene) malononitrile group to obtain closer stacking to lower lipophilicity and elongate emission to the far-red to near-infrared wavelength. As proof-of-concept, the membrane-associated enzyme γ-glutamyltranspeptidase (GGT) was selected as a model enzyme to design the antidiffusion probe HYPQG. Then, benefiting from the precipitating and stable signal properties of HYPQ, in situ imaging of GGT on the membrane was successfully realized. Moreover, after HYPQG was activated by GGT, the fluorescence signal on the cell membrane remained unchanged, with incubation time even extending to 6 h, which is significant for in situ monitoring of enzymatic activity. In vivo testing subsequently showed that the tumor region could be accurately defined by this probe after long-term in situ imaging of tumor-bearing mice. The excellent performance of HYPQ indicates that it may be an ideal alternative for constructing universal antidiffusion fluorescent probes, potentially providing an efficient tool for accurate imaging-guided surgery in the future.


Assuntos
Membrana Celular , Corantes Fluorescentes/química , Imagem Molecular/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Difusão , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Células Hep G2 , Humanos , Camundongos , Células NIH 3T3 , Neoplasias Experimentais/diagnóstico por imagem , Estudo de Prova de Conceito , Quinazolinonas/química , Ensaios Antitumorais Modelo de Xenoenxerto , gama-Glutamiltransferase/análise , gama-Glutamiltransferase/metabolismo
7.
Chem Commun (Camb) ; 56(90): 14007-14010, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33094758

RESUMO

The in situ and real-time supervision of reactive oxygen species (ROS) generated during photodynamic therapy (PDT) is of great significance for lessening nonspecific damage and guiding personalized therapy. However, photosensitizers frequently fail to deliver successful treatment accompanying the ROS-related imaging signals produced, impeding simple treatment outcome predictions and therapeutic schedule adjustments. Here, we report a two-photon fluorescence self-reporting strategy for the in situ and real-time monitoring of treatment response via a novel black phosphorus-based two-photon nanoprobe (TPBP). TPBP effectively generated singlet oxygen (1O2) under near-infrared laser irradiation for PDT, and 1O2 stimulated a two-photon molecule to emit fluorescence signals for feedback of 1O2 generation, which facilitated the regulation of treatment parameters to achieve precise and personalized medicine in deep tissue.


Assuntos
Antineoplásicos/farmacologia , Fluorescência , Corantes Fluorescentes/farmacologia , Fósforo/farmacologia , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Estrutura Molecular , Imagem Óptica , Fósforo/química , Fármacos Fotossensibilizantes/química , Medicina de Precisão , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo
8.
Chem Commun (Camb) ; 56(58): 8103-8106, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32555855

RESUMO

A FRET-based probe for mapping the fluctuation of ONOO- in cisplatin-induced acute kidney injury was constructed. It exhibits ratiometric near infrared fluorescence and a dramatic decrease of its peak absorbance at 719 nm upon addition of ONOO- that is converted into remarkable signal changes in fluorescence and photoacoustic images respectively.


Assuntos
Injúria Renal Aguda/metabolismo , Fluorescência , Sondas Moleculares/análise , Sondas Moleculares/química , Ácido Peroxinitroso/análise , Técnicas Fotoacústicas , Injúria Renal Aguda/induzido quimicamente , Animais , Linhagem Celular , Cisplatino/administração & dosagem , Transferência Ressonante de Energia de Fluorescência , Humanos , Raios Infravermelhos , Injeções Intravenosas , Camundongos , Estrutura Molecular
9.
J Am Chem Soc ; 142(5): 2129-2133, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31955575

RESUMO

Labile heme (LH) is an important signaling molecule in virtually all organisms. However, specifically detecting LH remains an outstanding challenge. Herein, by learning from the bioactivation mechanism of artemisinin, we have developed the first LH-responsive small-molecule fluorescent probe, HNG, based on a 4-amino-1,8-naphthalimide (NG) fluorophore. HNG showed high selectivity for LH without interference from hemin, protein-interacting heme, and zinc protoporphyrin. Using HNG, the changes of LH levels in live cells were imaged, and a positive correlation of LH level with the degree of hemolysis was uncovered in hemolytic mice. Our study not only presents the first molecular probe for specific LH detection but also provides a strategy to construct probes with high specificity through a bioinspired approach.


Assuntos
Artemisininas/farmacologia , Corantes Fluorescentes/química , Heme/química , Lactonas/farmacologia , Animais , Artemisininas/química , Humanos , Lactonas/química , Camundongos , Transdução de Sinais
10.
Chem Commun (Camb) ; 56(13): 1956-1959, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31956868

RESUMO

Herein, we report a pH stimulus-disaggregated BODIPY sensitizer (PTS) with low background-toxicity for achieving activated photodynamic/photothermal tumor therapy. Both the photodynamic and photothermal properties of PTS can be activated under acidic conditions, and PTS exhibits excellent antitumor properties, which is revealed by both in vitro and in vivo tests.


Assuntos
Compostos de Boro/química , Fármacos Fotossensibilizantes/química , Animais , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Luz , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Transplante Heterólogo
11.
Mar Drugs ; 17(12)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847481

RESUMO

Three new 11,20-epoxybriaranes-fragilides U-W (1-3), as well as two known metabolites, junceellonoid D (4) and junceellin (5), were obtained from the octocoral Junceella fragilis. The structures of briaranes 1-3 were elucidated by spectroscopic methods and briaranes 3 and 5 displayed inhibition effects on inducible nitric oxide synthase (iNOS) release from RAW264.7.


Assuntos
Antozoários/fisiologia , Diterpenos/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Diterpenos/química , Diterpenos/classificação , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7
12.
Chem Commun (Camb) ; 55(73): 10916-10919, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31441466
13.
Anal Chem ; 91(15): 9682-9689, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31282656

RESUMO

Furin, an important member in the family of proprotein convertases, is a participant in the activation of various precursor proteins. The expression level of furin stays in a very low range in most normal cells, but elevates with a big margin in many cancer cells. More importantly, furin is closely related to tumor formation and migration. Herein, a furin-activatable near-infrared (NIR) fluorescent probe (HD-F) was first developed that allowed for specific, sensitive detection and imaging of furin both in vitro and in vivo. HD-F consists of a classical NIR fluorophore (HD), a furin-particular polypeptide sequence RVRR, and a self-eliminating linker. Without the interaction with furin, no noticeable fluorescence enhancement was detected, even over 3 days, demonstrating the excellent stability of HD-F. Upon conversion by furin, there was a distinct signal increase around 708 nm. It has achieved assay and visualization of endogenous furin in various cells, tumor tissues, and tumor-bearing mouse models. Importantly, HD-F is well-suited for monitoring the change of furin expression level in the process of hypoxia-inducible factor-1 stabilized by CoCl2. Moreover, HD-F could visualize the divergence in the expression level of furin between normal and cancer cells, indicating its potential in specific cancer imaging. Thus, this novel probe is able to serve as a potential tackle for better understanding of the intrinsic link between a hypoxic physiological environment and cellular carcinogenesis and predicting cancer in preclinical applications.


Assuntos
Carcinogênese , Furina/química , Animais , Fluorescência , Corantes Fluorescentes , Furina/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Transporte Proteico , Análise de Célula Única
14.
ACS Appl Mater Interfaces ; 11(19): 17722-17729, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30998313

RESUMO

Selenocysteine (Sec) has proven to be the dominant active site of diverse selenoproteins that are directly linked with human health and disease. Thus, understanding the critical functions and dynamics of endogenous Sec at cellular and tissue levels is highly demanded. However, no method has been reported that is capable of providing reliable quantitative imaging analysis of Sec in living systems, especially in deep tissues, with low background signal and high sensitivity and imaging resolution simultaneously. To address this challenge, we herein report a novel class of engineered Sec-responsive fluorescent nanoprobes that combines two-photon excitation with Förster resonance energy transfer (FRET) mechanisms for direct, yet selective, sensing and imaging of biological Sec over abundant competing biothiols. Specifically, the two-photon excitation at the near-infrared window can minimize light scattering and background signals in tissues, thus offering improved spatial and temporal imaging of deep living tissues with reduced background interference. Moreover, a reasonable FRET donor-acceptor pair has further been designed and verified by theoretical calculation. The acceptor undergoes intramolecular rearrangement specifically in response to the nucleophilic attack of Sec, hence triggering remarkable FRET-mediated ratiometric fluorescence enhancement for sensitive and reliable quantification of Sec through self-calibration of two emission channels. These striking properties, along with good water solubility and biocompatibility, suggest that this strategy may serve as a valuable imaging tool for studying various Sec-related biological events in complex biological systems.


Assuntos
Técnicas Biossensoriais , Nanopartículas/química , Selenocisteína/isolamento & purificação , Calibragem , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Fótons , Selenocisteína/química
15.
Anal Chem ; 91(9): 6371-6377, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30957493

RESUMO

Two-photon fluorescent imaging that utilizes two near-infrared photons as an excitation source affords higher penetration depth of tissue for biomedical research, compared with one-photon fluorescent imaging. However, the high laser power levels of the excitation source may induce photobleaching of two-photon dyes and photodamage to biosamples, which hampers its wide application for in vivo imaging. Inspired by supramolecular chemistry, we have developed a two-photon excited nanoprobe (TPFN) via host-guest interaction with excellent sensitivity, selectivity, biocompatibility, water solubility, and imaging penetration depth. Notably, this supramolecular assembly can significantly amplify the fluorescence intensities of guest molecules (21-fold increase), thereby affording a detection limit of 0.127 µM for sensing H2O2, which is greatly lower than that of free guest molecules (11.98 µM). In particular, ratiometric fluorescent imaging provides more accurate analysis of intracellular H2O2 via the built-in correction of the internal reference. Importantly, TPFN excited by a two-photon laser provides higher penetration depth for visualizing H2O2 in deeper liver tissues, compared with that of one-photon excitation. Thus, TPFN can serve as a powerful nanoplatform for ratiometric imaging of various species via this facile supramolecular self-assembly strategy.


Assuntos
Peróxido de Hidrogênio/análise , Fígado/química , Nanopartículas/química , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Imagem Óptica , Fótons , Animais , Corantes Fluorescentes/química , Células HeLa , Humanos , Raios Infravermelhos , Fígado/patologia , Substâncias Macromoleculares/química , Camundongos , Camundongos Nus
16.
Chem Commun (Camb) ; 55(31): 4487-4490, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30912542

RESUMO

In this work, we report the first bioluminescent probe BP-PS for detecting H2Sn with high specificity and sensitivity. Owing to the bioluminescence imaging without requiring an excitation light source, tissue autofluorescence is eliminated and BP-PS shows a high signal-to-noise ratio. Moreover, BP-PS was successfully utilized to visualize endogenous H2Sn in live cells and a murine model of bacterial infection.


Assuntos
Infecções Bacterianas/diagnóstico por imagem , Corantes Fluorescentes/química , Sulfetos/química , Animais , Infecções Bacterianas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Humanos , Camundongos , Microscopia de Fluorescência , Imagem Óptica , Espectrometria de Fluorescência
17.
Chem Sci ; 10(1): 320-325, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30713640

RESUMO

Carbon monoxide (CO) acts as an important gasotransmitter in delivering intramolecular and intermolecular signals to regulate a variety of physiological processes. This lipid-soluble gas can freely pass through the cell membrane and then diffuse to adjacent cells acting as a messenger. Although many fluorescent probes have been reported to detect intracellular CO, it is still a challenge to visualize the release behavior of endogenous CO. The main obstacle is the lack of a probe that can anchor onto the cell membrane while having the ability to image CO in real time. In this work, by grafting a polar head onto a long and linear hydrophobic Nile Red molecule, a cell membrane-anchored fluorophore ANR was developed. This design strategy of a cell membrane-anchored probe is simpler than the traditional one of using a long hydrophobic alkyl chain as a membrane-anchoring group, and endows the probe with better water solubility. ANR could rapidly bind to the cell membrane (within 1 min) and displayed a long retention time. ANR was then converted to a CO-responsive fluorescent probe (ANRP) by complexation with palladium based on a metal palladium-catalyzed reaction. ANRP exhibited a fast response to CO with a 25-fold fluorescence enhancement in vitro. The detection limit was calculated to be 0.23 µM, indicating that ANRP is sensitive enough to image endogenous CO. Notably, ANRP showed excellent cell membrane-anchoring ability. With ANRP, the release of CO from HepG2 cells under LPS- and heme-stimulated conditions was visualized and the cell self-protection effect during a drug-induced hepatotoxicity process was also studied. Moreover, ANRP was successfully applied to the detection of intracellular CO in several cell lines and tissues, and the results demonstrated that the liver is the main organ for CO production, and that cancer cells release more CO from their cells than normal cells. ANRP is the first membrane-anchored CO fluorescent probe that has the ability to reveal the relationship between CO release and diseases. It also has prospects for the studying of intercellular signaling functions of CO.

18.
Talanta ; 197: 436-443, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30771959

RESUMO

Nitric oxide (NO) plays vital roles in many physiological process and is closely related to many diseases. So far, a number of fluorescent probes have been constructed for the detection of NO successfully. However, the probes still suffer from long-time reaction and limited selectivity. Herein, a fluorescent probe named dRB-OPD is synthesized and used to recognize NO. The probe contains a deoxy-rhodamine B as fluorophore and o-phenylenediamino as reaction site. dRB-OPD shows fast response to NO within 40 s with 170-fold fluorescence enhancement. Moreover, the probe shows high selectivity towards NO over dehydroascorbic acid (DHA), ascorbic acid (AA), and methylglyoxal (MGO). Particularly, the probe can avoid the serious interference from cysteine (Cys) found in the rhodamine lactam-based fluorescent NO probes (RB-OPD). In addition, the probe is applied for the detection of exogenous and endogenous NO in the HepG2 and RAW 264.7 cells with satisfactory results.


Assuntos
Corantes Fluorescentes/química , Óxido Nítrico/análise , Rodaminas/química , Animais , Corantes Fluorescentes/síntese química , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , Células RAW 264.7
19.
Chem Commun (Camb) ; 55(12): 1758-1761, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664144

RESUMO

A bioluminescent probe, BP-HNO, which exhibits a turn-on response to nitroxyl with high sensitivity and selectivity, is reported for the first time in this work. BP-HNO is free from the interference of biological autofluorescence to afford a high signal-to-noise ratio for bioimaging, and was successfully applied to imaging nitroxyl in live cells and mice.


Assuntos
Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Animais , Linhagem Celular Tumoral , Humanos , Medições Luminescentes , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Imagem Óptica , Transfecção , Transplante Heterólogo
20.
Chem Sci ; 10(47): 10931-10936, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-32190249

RESUMO

Molecular probes activated by a single enzyme have been extensively used in bioimaging and disease diagnosis; however, imaging and identification in an accurate manner remains a challenge for such probes. Here, based on the specificity of enzyme recognition, we engineered a "double-locked" and enzyme-activated molecular probe (NML) for accurate bioimaging and hepatopathy differentiation. Triggered by the successive reactions with leucine aminopeptidase (LAP, first "key") and monoamine oxidase (MAO, second "key"), the emissive fluorophore (NF) was released. NML can be activated only in the presence of both LAP and MAO and can be silenced when either enzyme is inhibited. Benefiting from the "double-locked" strategy, NML showed higher accuracy for imaging of drug-induced liver injury (DILI) than the "single-locked" probe. With serum testing, NML showed significant differences in mouse models of both CCl4-induced liver cirrhosis and DILI. Significantly, NML can be applied to accurately distinguish serum samples from clinical patients with different hepatopathies. Our smart molecular probe may hold great potential for hepatopathy diagnosis and clinical transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...