Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Cell Prolif ; 57(3): e13554, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37767639

RESUMO

'General requirements for the production of extracellular vesicles derived from human stem cells' is the first guideline for stem cells derived extracellular vesicles in China, jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research. This standard specifies the general requirements, process requirements, packaging and labelling requirements and storage requirements for preparing extracellular vesicles derived from human stem cells, which is applicable to the research and production of extracellular vesicles derived from stem cells. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will promote institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardisation of extracellular vesicles derived from human stem cells.


Assuntos
Vesículas Extracelulares , Células-Tronco , Humanos , China
2.
Water Res ; 250: 121055, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159544

RESUMO

Low-pressure catalytic membranes allow efficient rejection of particulates and simultaneously removing organics pollutant in water, but the accumulation of dissolved organic matters (DOM) on membrane surface, which cover the catalytic sites and cause membrane fouling, challenges their stable operation in practical wastewater treatment. Here we propose a ferric salt-based coagulation/co-catalytic membrane integrated system that can effectively mitigate the detrimental effects of DOM. Ferric salt (Fe3+) serving both as a DOM coagulant to lower the membrane fouling and as a co-catalyst with the membrane-embedded MoS2 nanosheets to drive perxymonosulfate (PMS) activation and pollutant degradation. The membrane functionalized with 2H-phased MoS2 nanosheets showed improved hydrophilicity and fouling resistance relative to the blank polysulfone membrane. Attributed to the DOM coagulation and co-catalytic generation of surface-bound radicals for decontamination at membrane surface, the catalytic membrane/PMS/ Fe3+ system showed much less membrane fouling and 2.6 times higher pollutant degradation rate in wastewater treatment than the catalytic membrane alone. Our work imply a great potential of coagulation/co-catalytic membrane integrated system for water purification application.


Assuntos
Poluentes Ambientais , Purificação da Água , Molibdênio , Membranas Artificiais , Ferro , Matéria Orgânica Dissolvida
3.
J Hazard Mater ; 446: 130667, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36580783

RESUMO

Self-assembled bio-hybrids with biogenic ferrous sulfide nanoparticles (bio-FeS) on the cell surface are attractive for reduction of toxic heavy metals due to higher activity than bare bacteria, but they still suffer from slow synthesis and regeneration of bio-FeS and bacterial activity decay for removal of high-concentration heavy metals. A further optimization of the bio-FeS synthesis process and properties is of vital importance to address this challenge. Herein, we present a simple pH-regulation strategy to enhance bio-FeS synthesis and elucidated the underlying regulatory mechanisms. Slightly raising the pH from 7.4 to 8.3 led to 1.5-fold higher sulfide generation rate due to upregulated expression of thiosulfate reduction-related genes, and triggered the formation of fine-sized bio-FeS (29.4 ± 6.1 nm). The resulting bio-hybrid exhibited significantly improved extracellular reduction activity and was successfully used for treatment of high-concentration chromium -containing wastewater (Cr(VI), 80 mg/L) at satisfactory efficiency and stability. Its feasibility for bio-augmented treatment of real Cr(VI)-rich electroplating wastewater was also demonstrated, showing no obvious activity decline during 7-day operation. Overall, our work provides new insights into the environmental-responses of bio-hybrid self-assembly process, and may have important implications for optimized application of bio-hybrid for wastewater treatment and environmental remediation.


Assuntos
Metais Pesados , Nanopartículas , Purificação da Água , Águas Residuárias , Cromo/química , Compostos Ferrosos/química , Bactérias , Concentração de Íons de Hidrogênio
4.
Precis Clin Med ; 5(3): pbac020, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36132055

RESUMO

The dermal papilla cells in hair follicles function as critical regulators of hair growth. In particular, alopecia areata (AA) is closely related to the malfunctioning of the human dermal papilla cells (hDPCs). Thus, identifying the regulatory mechanism of hDPCs is important in inducing hair follicle (HF) regeneration in AA patients. Recently, growing evidence has indicated that 3' untranslated regions (3' UTR) of key genes may participate in the regulatory circuitry underlying cell differentiation and diseases through a so-called competing endogenous mechanism, but none have been reported in HF regeneration. Here, we demonstrate that the 3' UTR of junctional adhesion molecule A (JAM-A) could act as an essential competing endogenous RNA to maintain hDPCs function and promote HF regeneration in AA. We showed that the 3' UTR of JAM-A shares many microRNA (miRNA) response elements, especially miR-221-3p, with versican (VCAN) mRNA, and JAM-A 3' UTR could directly modulate the miRNA-mediated suppression of VCAN in self-renewing hDPCs. Furthermore, upregulated VCAN can in turn promote the expression level of JAM-A. Overall, we propose that JAM-A 3' UTR forms a feedback loop with VCAN and miR-221-3p to regulate hDPC maintenance, proliferation, and differentiation, which may lead to developing new therapies for hair loss.

5.
Proc Natl Acad Sci U S A ; 119(31): e2201607119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878043

RESUMO

Nonradical Fenton-like catalysis offers opportunities to overcome the low efficiency and secondary pollution limitations of existing advanced oxidation decontamination technologies, but realizing this on transition metal spinel oxide catalysts remains challenging due to insufficient understanding of their catalytic mechanisms. Here, we explore the origins of catalytic selectivity of Fe-Mn spinel oxide and identify electron delocalization of the surface metal active site as the key driver of its nonradical catalysis. Through fine-tuning the crystal geometry to trigger Fe-Mn superexchange interaction at the spinel octahedra, ZnFeMnO4 with high-degree electron delocalization of the Mn-O unit was created to enable near 100% nonradical activation of peroxymonosulfate (PMS) at unprecedented utilization efficiency. The resulting surface-bound PMS* complex can efficiently oxidize electron-rich pollutants with extraordinary degradation activity, selectivity, and good environmental robustness to favor water decontamination applications. Our work provides a molecule-level understanding of the catalytic selectivity and bimetallic interactions of Fe-Mn spinel oxides, which may guide the design of low-cost spinel oxides for more selective and efficient decontamination applications.


Assuntos
Elétrons , Óxidos , Catálise , Óxido de Magnésio/química , Óxidos/química , Peróxidos/química
6.
Environ Sci Pollut Res Int ; 29(53): 80683-80692, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35725882

RESUMO

Nanoscale zero-valent iron (nZVI) has been intensively studied for pollution control because of its high reductive activity and environmental benignity, but the poor reaction selectivity and the aging problem have limited its practical decontamination application. Here, we shed light on the impacts of nZVI shell structure on its reactivity and air stability by systematically comparing two nZVI materials with distinct iron oxide shells. The nZVI with highly crystalline and weakly hydrophilic shell exhibited ninefold higher intrinsic activity for nitrate reduction and significantly improved air stability than that with amorphous, hydrophilic iron hydroxide oxide shell. The compact-structured crystalline shell of nZVI facilitated more efficient interfacial electronic transfer for nitrate reduction and suppressed side reaction of hydrogen evolution. The protective hematite shell endowed the nZVI with significantly improved anti-aging ability, and the reducing force remained 92.6% after exposed to air for 10 days due to decreased oxygen diffusion. This work provides a better understanding of the pollutant degradation behavior of nZVI and may guide an improved synthesis and environmental application of nZVI.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Ferro/química , Nitratos/química , Óxidos de Nitrogênio , Hidróxidos , Hidrogênio , Oxigênio , Poluentes Químicos da Água/análise
7.
Nanoscale ; 14(23): 8409-8417, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35638451

RESUMO

Inorganic-biological hybrid systems (bio-hybrids), comprising fermentative bacteria and inorganic semiconductor photosensitizers for synergistic utilization of solar energy and organic wastes, offer opportunities for sustainable fuel biosynthesis, but the low quantum efficiency, photosensitizer biotoxicity and inability for self-regeneration are remaining hurdles to practical application. Here, we unveil a previously neglected role of oxygen in suppressing the biosynthesis of cadmium selenide quantum dots (CdSe QDs) and the metabolic activities of Escherichia coli, and accordingly propose a simple oxygen-regulation strategy to enable the self-assembly of bacterial-QD hybrids for efficient solar hydrogen production. Shifting from aerobic to anaerobic biosynthesis significantly lowered the intracellular reactive oxygen species level and increased NADPH and thiol-protein production, enabling a two-order-of-magnitude higher bio-QD synthesis rate and resulting in CdSe-rich products. Bacteria with abundant biocompatible intracellular bio-QDs naturally formed a highly active and self-regenerable bio-hybrid and achieved a quantum efficiency of 28.7% for hydrogen production under visible light, outperforming all the existing bio-hybrids. It also exhibited high stability during cyclic operation and robust performance for treating real wastewater under simulated sunlight. Our work provides valuable new insights into the metallic nanomaterial biosynthesis process to guide the design of self-assembled bio-hybrids towards sustainable energy and environmental applications.


Assuntos
Pontos Quânticos , Anaerobiose , Escherichia coli , Hidrogênio , Oxigênio , Pontos Quânticos/química , Luz Solar
8.
Water Res ; 206: 117731, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626885

RESUMO

Biogenic ferrous sulfide nanoparticles (bio-FeS) as low-cost and green-synthesized nanomaterial are promising for heavy metals removal, but the need for complicated extraction, storage processes and the production of iron sludge still restrict their practical application. Here, a self-regenerable bio-hybrid consisting of bacterial cells and self-assembled bio-FeS was developed to efficiently remove chromium (Cr(VI)). A dense layer of bio-FeS was distributed on the cell surface and in the periplasmic space of Shewanella oneidensis MR-1, endowing the bacterium with good Cr(VI) tolerance and unusual activity for bio-FeS-mediated Cr(VI) reduction. An artificial transmembrane electron channel was constituted by the bio-FeS to facilitate extracellular electron pumping, enabling efficient regeneration of extracellular bio-FeS for continuous Cr(VI) reduction. The bio-hybrid maintained high activity within three consecutive treatment-regeneration cycles for treating both simulated Cr(VI)-containing wastewater (50 mg/L) and real electroplating wastewater. Importantly, its activity can be facilely and fully restored through bio-FeS re-synthesis or regeneration with replenished fresh bacteria. Overall, the bio-hybrid merges the self-regeneration ability of bacteria with high activity of bio-FeS , opening a promising new avenue for sustainable treatment of heavy metal- containing wastewater.


Assuntos
Cromo , Nanopartículas , Cromo/análise , Compostos Ferrosos , Shewanella , Águas Residuárias
9.
Water Environ Res ; 93(11): 2795-2806, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34486191

RESUMO

The present study sought to determine the systematic pollution status of the heavy metals (HMs) found in the sediment around Taihu Lake, China. The concentrations and speciations of the HMs in the sediment were measured. The Ni and Cr concentrations exceeded the probable effect level (PEL), while the concentrations of the other HMs (except Hg) were between the threshold effect level and the PEL. The enrichment factor values for all HMs indicated slight enrichment. The geoaccumulation index revealed that the HMs represented light pollution, while the average contaminant factor value of the HMs indicated moderate pollution. The ecological risk factor value indicated a medium ecological risk, with Cd and Hg being associated with a high and considerable potential ecological risk, respectively. The ecological risk index indicated that the ecological risk posed by the HMs was high. The contamination degree revealed a moderate level of metal pollution, while the pollution load index indicated a heavy pollution level. The extractable proportion of the HMs (except for Cr and As) exceeded 50%. In the case of Cd, the exchangeable proportion was 51.11%, which indicated it to be extremely unstable. PRACTITIONER POINTS: Heavy metals (except for Cr and As) have a high potential ecological risk. All selected heavy metals implying varying degrees of instability. Cd was the most serious pollutant based on the Igeo, Cf and EF analyses.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
10.
Ecotoxicol Environ Saf ; 214: 112095, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667735

RESUMO

In this study, urban stream sediment samples were collected in the Suzhou Industrial Park (SIP), one of the earliest national demonstration eco-industrial parks of China. PAHs were analyzed in these sediments, and concentrations of total PAHs were 180-81,000 ng g-1 (5700 ± 14,000 ng g-1). Medium molecular weight (4- ring) PAHs were predominant (42 ± 12%), followed by high molecular weight (5- and 6- ring) PAHs (31 ± 10%). No correlation was found between concentrations of PAHs and land uses of SIP in this study. Diagnostic ratios and a positive matrix factorization (PMF) model indicated that coal/biomass combustion might be the primary PAH source (61%), followed by non-combustion sources (21%) and vehicular emission (18%). According to the spatial analysis, PAHs in the sediments of SIP might be mainly associated with the coal/biomass combustion in the northeast industrial zone. Residential & commercial activities seem not to be the major causes of PAH contamination. Total PAH toxic equivalent concentrations, effect range low/effect range median values, and mean effects range-median quotient all showed that PAHs were present at a low toxicity risk level in most regions of the SIP. However, vigilance is required at some sampling sites with extremely high PAH concentrations or high mean effects range-median quotient.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , China , Carvão Mineral/análise , Monitoramento Ambiental , Sedimentos Geológicos , Indústrias , Medição de Risco , Rios , Emissões de Veículos/análise
11.
Mar Pollut Bull ; 157: 111286, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658666

RESUMO

The Yellow River Delta (YRD) is an important spawning and nursery area for numerous fishes. The concentrations of Fe, Al, Mn, Zn, Ni, Cr, Cu, Co, Pb and Cd in muscle, liver, gills and skin of two broadly distributed commercial fish in the YRD were analyzed. The results demonstrated that liver and gills displayed higher accumulation ability of metals than other tissues, while muscle always accumulated the lowest concentrations of metals. Generally, significant opposite relationships (p < 0.05) were observed between fish size and metals in fish tissues especially in muscles of both fish species which may be explained by the lower feeding rate, stronger detoxification and elimination mechanisms in the bigger individuals. All metals in muscles were well below the proposed toxic limit. Besides, the toxic effects were not expected to occur for the consumption of muscles of studied fish according to the results of human health risk assessment.


Assuntos
Metais Pesados/análise , Poluentes Químicos da Água/análise , Animais , China , Monitoramento Ambiental , Peixes , Humanos , Medição de Risco , Rios
12.
Bioresour Technol ; 302: 122865, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32004814

RESUMO

Fermentative caproate production from wastewater is attractive but is currently limited by the low product purity and concentration. In this work, continuous, selective production of caproate from acetate and ethanol, the common products of wastewater anaerobic fermentation, was achieved in an anaerobic membrane bioreactor (AnMBR). The reactor was continuously operated for over 522 days without need for chemical cleaning. With an ethanol-to-acetate ratio of 3.0, the effluent caproate concentration was 2.62 g/L on average and the caproate ratio in liquid products reached 74%. Further raising the influent ethanol content slightly increased the effluent caproate level but lowered the product selectivity and resulted in microbial inhibition. The Clostridia (the major caproate-producing bacteria) and Methanobacterium species (which consume hydrogen to alleviate microbial inhibition) was significantly enriched in the acclimated sludge. Our results imply a great potential of utilizing AnMBR to recover caproate from the effluent of wastewater acidogenic fermentation process.


Assuntos
Reatores Biológicos , Caproatos , Anaerobiose , Bactérias Anaeróbias , Fermentação
13.
Bioresour Technol ; 297: 122448, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31771810

RESUMO

In this work, a single microbial electrochemical system was developed for multiple goals simultaneously - CO2 reduction, biogas purification, upgrading and sulfur recovery. This system consists of a methanogen-inoculated biocathode for CO2 reduction and a ferrous ion (Fe2+)-mediated abiotic anode for hydrogen sulfide (H2S) oxidation. In the cathodic chamber, methane production rate of 20.6 ± 1.0 µmol·h-1 and high upgrading level (up to 98.3% methane content) were achieved. In the anodic chamber, H2S was completely removed and selectively converted into elemental sulfur particles. The system showed stable performance during continuous operation for treating both pure CO2 and mixed gases, with a cathodic coulombic efficiency of up to 85.2%. This simple system holds a great potential for practical application for biogas upgrading and sulfur recovery from waste water/gases.


Assuntos
Biocombustíveis , Dióxido de Carbono , Metano , Enxofre , Águas Residuárias
14.
Environ Sci Pollut Res Int ; 26(34): 35094-35106, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31679141

RESUMO

The surface soils were collected from four areas in the Yellow River Delta (YRD), including three functional areas in the natural reserve of the YRD (the core area, buffer area, and experimental area) and a neighboring area of the natural reserve. The total concentrations, speciations, contamination status, and health risk assessments of the mercury (Hg) and arsenic (As) in surface soils of the YRD were investigated. The average Hg concentration was about three times that of the background value, while As was just slightly higher than the background. Hg levels in the sites of experimental area were significantly higher than those in the core area and buffer area, which was consistent with the human activity intensities of the three functional areas. However, no significant differences of As levels were observed across different areas. According to the sequential extraction experiments, only less than 5% of Hg and As were associated with the exchangeable fraction, while over 80% of them were found in the residual fraction, indicating low mobility and bioavailability of both Hg and As. The soil contamination status assessments suggested a "good state," and the health risk assessments indicated a "low risk" of Hg and As in the soils of YRD.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Mercúrio/análise , Poluentes do Solo/análise , China , Humanos , Medição de Risco , Rios , Solo
15.
Arch Environ Contam Toxicol ; 77(4): 594-604, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388704

RESUMO

A total of 39 lower brominated PBDE congeners in surface soils from the Yellow River Delta Natural Reserve (YRDNR) were analyzed in the present study. The total concentrations of PBDEs (ΣPBDEs) ranged from "not detected" to 0.732 ng g-1, with a mean concentration of 0.142 ng g-1. The concentrations of the ΣPBDEs displayed no correlation with the content of the total organic carbon in the YRDNR. The ΣPBDEs concentrations in the Experimental Area were significantly higher than that of the Buffer Area and Core Area, and ΣPBDEs in soils in the North were lower than that of the South. PentaBDEs and HexaBDEs were the most abundant homologues, and the occurrence of PBDEs in the YRDNR may be attributed to the debromination and long range transport of DecaBDEs. Even though the cancer risk and mass inventory of PBDEs in the present study area were estimated to be very low, due to the widespread presence of PBDEs and the particularity of the natural reserve, vigilance should not be let up on the issue of environmental contamination caused by these compounds despite the gradual phase out of their commercial products in the world.


Assuntos
Éteres Difenil Halogenados/análise , Poluentes do Solo/análise , Carcinógenos Ambientais/análise , Carcinógenos Ambientais/toxicidade , China , Conservação dos Recursos Naturais , Monitoramento Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/toxicidade , Humanos , Medição de Risco , Poluentes do Solo/toxicidade
16.
Environ Int ; 129: 273-278, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146161

RESUMO

China's national development strategy now prioritizes environmental protection over economic growth, which has driven a rapid development of China's wastewater sector. In particular, the treatment capacity of municipal wastewater treatment plants (WWTPs) has been substantially strengthened and stricter effluent quality control enforced. However, the operating performance of most WWTPs is still poor and does not meet the sustainable development demands. In this study, the current status of WWTPs operation in China was comprehensively analyzed, the key barriers to improving the plants operating efficiency were identified by taking into account the different plant scales, geographic distribution, discrepancy between cities and counties, and the influence of environmental policies and supplementary facilities. The underdeveloped sewer network was mainly responsible for the low operating ratios (i.e., utilization degree of the designed treatment capacity) of the plants (76% in counties and 85% in cities) especially for those in north China, although the situation is plant specific because a considerable fraction of plants (19%) are still running under overload condition. Other challenges include the high energy consumption of the plants (0.313 kWh/m3), and severely lagged implementation of sludge disposal (up to 40% sludge was still improperly disposed), arising mainly from the poor management on the sewer and sludge. Lastly, several possible directions of improvement to overcome these barriers were discussed. This work may provide valuable implications for optimizing municipal wastewater management in China towards higher efficiency and sustainability.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/análise , China , Esgotos , Eliminação de Resíduos Líquidos/instrumentação
17.
J Chem Neuroanat ; 98: 87-96, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959172

RESUMO

Abnormal long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) participate in the pathophysiology of Alzheimer's disease (AD). However, it remains unclear whether these two types of noncoding RNAs functionally interact and which factors mediate these interactions in AD. ß-secretase 1 (BACE1) is the enzyme responsible for amyloid plaque formation, which is a central pathological feature of AD. The lncRNA BACE1-AS and some miRNAs have been implicated in the regulation of BACE1. In this study, we reveal that BACE1-AS shares many miRNA-response elements with BACE1. The overexpression of BACE1-AS results in the repression of miRNAs that target BACE1, thus preventing BACE1 mRNA from being degraded. The knockdown of BACE1-AS increases the levels of these miRNAs, thereby reducing the expression of BACE1. Thus, BACE1-AS functions as a competing endogenous RNA (ceRNA). Our results also deepen the understanding of the regulation of BACE1 by BACE1-AS. In addition to increasing the stability of BACE1 mRNA through the formation of RNA duplexes, BACE1-AS can regulate BACE1 indirectly by acting as a ceRNA. Therefore, we propose that BACE1 functions as a ceRNA and forms a network through its associations with protein-coding genes, lncRNAs and miRNAs in the pathophysiology of AD.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica/fisiologia , Estabilidade de RNA/fisiologia , RNA Longo não Codificante/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Bull Environ Contam Toxicol ; 102(6): 843-847, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30993357

RESUMO

A total of 28 PCB congeners were determined using gas chromatography-mass spectrometry (GC-MS) in 46 surface soils collected from the Yellow River Delta Natural Reserve (YRDNR) and its adjacent area, China. The total concentrations of PCBs in the YRDNR ranged from 0.149 to 4.32 ng/g, with a mean concentration of 0.802 ng/g. Light PCB congeners predominated in the present research area, which may be attributed to the atmospheric transportation and were also associated with the recent contamination of unintentionally produced PCBs from industrial processes. In addition, PCB 126 and PCB 169 were found to be the major toxicity contributors of dioxin-like PCBs in the YRDNR, which should require special focus.


Assuntos
Bifenilos Policlorados/análise , Rios/química , Poluentes do Solo/análise , Solo/química , China , Monitoramento Ambiental/métodos , Cromatografia Gasosa-Espectrometria de Massas , Bifenilos Policlorados/química , Medição de Risco , Poluentes do Solo/química
19.
Mol Med ; 25(1): 9, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922214

RESUMO

BACKGROUND: Cell therapy is proposed to be a potential treatment for Parkinson's disease (PD). Although fetal retinal pigment epithelial (RPE) cells have been tested in trials for treating PD patients, controversy has been raised over the issue of whether such cells can be reprogrammed into dopamine-producing cells for therapeutic efficacy. Here, we aim to investigate whether adult human RPE cells can be reprogrammed into dopamine-producing cells both in vitro and in the recipient monkey brain. METHODS: The RPE layer was isolated from frozen posterior eyeball tissue after penetrating keratoplasty surgery. The tumorigenicity of RPE cells was examined by G-banding and a tumor formation assay in nude mice. Immunogenicity was measured using a one-way mixed lymphocyte reaction (MLR) assay. Dopamine-production in chemically reprogrammed RPE cells was measured by HPLC. Finally, RPE cells were grafted into the brains of monkeys with MPTP-induced PD in order to investigate the potential of such cells treating PD patients in the future. RESULTS: RPE cell lines have been successively established from adult human eye tissues. Such cells can be chemically reprogrammed into dopamine-producing cells in vitro. Moreover, after being grafted into the brain caudate putamen of monkeys with MPTP-induced PD, RPE cells became tyrosine hydroxylase-positive cells, and recipient PD monkeys showed significant improvement of clinical conditions. CONCLUSIONS: This preclinical study using a primate model indicates that human adult RPE cells could be a potential cell source for the treatment of PD in the future.


Assuntos
Encéfalo/citologia , Terapia Baseada em Transplante de Células e Tecidos , Dopamina/metabolismo , Transtornos Parkinsonianos/terapia , Epitélio Pigmentado da Retina/citologia , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Teste de Cultura Mista de Linfócitos , Macaca fascicularis , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina/metabolismo
20.
Mar Pollut Bull ; 140: 388-394, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803658

RESUMO

Heavy metal pollution is a serious environmental problem. Up to date, research regarding distribution, accumulation and potential risk assessment of metals in aquatic organisms in Laizhou Bay, China is scarce. This study aims to investigate metals in aquatic organisms in this region. The results demonstrated that great variability of metals content occurred among species and sampling locations. Fe was the most abundant metal, followed by Zn, Mn, Cu, Ni, Cr, Cd and Pb. Overall, shellfish and crab displayed high enrichment ability compared with fish and shrimp. There was no significant correlation between metals and samples weight, δ13C and δ15N values. Principal component analysis (PCA) indicated that metals in samples were mainly derived from anthropogenic activities. Health risk of metals was evaluated on the basis of estimated daily intake (EDI) and target hazard quotient (THQ) values. The results indicated that metals in studied seafood had no significant risks for ordinary consumers.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Baías/química , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes Químicos da Água/análise , Animais , China , Metais Pesados/toxicidade , Medição de Risco , Frutos do Mar/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...