Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Immunol Infect ; 54(2): 193-205, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31296484

RESUMO

BACKGROUND: Patients with diabetes mellitus (DM) have higher incidence and more severe urinary tract infections (UTIs) for longer duration than those of the patients without DM. It causes more complicated etiologies during uropathogenic Escherichia coli (UPEC) infection. However, studies regarding the molecular mechanism are scarce. METHODS: The present study (1) aimed to verify if sugar influences the process of UPEC-induced cystitis and invasion into the uroepithelial cells and (2) illustrated the mechanism of effects for sugar enhanced the UPEC infection into uroepithelial cells is related to TLR-4-mediated and JAK/STAT1-dependent pathway. RESULTS: The results of the present study indicated that sugar can enhance UPEC infection in uroepithelial cells by up-regulating the transduced circuit between TLR-4-mediated UPEC interaction and JAK/STAT-1 signal pathways. The results of the inhibitor-co-incubating experiments demonstrated that the mechanism involved in the synergistic amplification of TLR-4-mediated UPEC interaction and JAK/STAT1 signaling pathways is responsible for the increased UPEC infection in uroepithelial cells. CONCLUSION: The results also proved that STAT-1 plays a critical role in the regulation of UPEC invasion and infection in the uroepithelial cells, especially those pretreated with glucose. The present study suggests a possible therapeutic approach to preferentially suppress UPEC infection during UTIs in the patients with diabetes.


Assuntos
Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Açúcares/metabolismo , Receptor 4 Toll-Like/metabolismo , Escherichia coli Uropatogênica , Urotélio/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Infecções por Escherichia coli/patologia , Regulação da Expressão Gênica , Humanos , Receptor 4 Toll-Like/genética , Infecções Urinárias/metabolismo , Infecções Urinárias/patologia , Urotélio/microbiologia , Urotélio/patologia
2.
Int J Med Microbiol ; 310(7): 151450, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33092696

RESUMO

BACKGROUND: UPEC can internalize clonally in prostate to form biofilm-like intracellular bacterial communities (IBCs) for recurrent or chronic infection. We previously indicated that the exposure of prostate cells to testosterone could suppress UPEC invasion and their persistent survival within cells by effectively inhibiting the JAK/STAT1 signaling pathway. However, the regulatory mechanism by which testosterone affects UPEC-induced prostatitis via STAT3, another latent transcription factor signaling pathway is still unclear. The present study aimed to clarify the role of STAT3 in the process of UPEC-induced inflammation and colonization in prostate epithelial cells. METHODS: The effects of testosterone-mediated inhibition were compared between the prostatitis by different UPEC strains (CFT073 and J96) through the specific GFP-UPEC-infected prostate cell model. Fluorescence microscopy was used for UPEC IBCs detection and quantifying, and Flow cytometry, RT-PCR and western blotting were used for analyzing related gene and protein expressions. Pretreatment of JAK and STAT3 inhibitors were also applied to verify the regulation of transduction pathway in testosterone-mediated anti-UPEC infection. RESULTS: This study revealed that testosterone effectively suppresses UPEC infection and IBC formation in prostate cells through the JAK/STAT3 pathway. The results show that CFT073 and J96 UPEC infection rates and colony numbers were dose-dependently reduced in RWPE-1 cells pretreated with 5 and 20 µg/mL testosterone at 0 and 24 h post-infection. Further, testosterone reduced the amounts of UPEC infecting and surviving within the prostate cells, as well as suppressed the size of IBCs formed. We demonstrated that pretreating testosterone effectively inhibited UPEC infection along with dose-dependent suppression of STAT3 and the phosphorylated-STAT3 expression in prostate cells, especially in 24 h J96 UPEC infected groups. The STAT inhibitor, SOCS3 also up-regulated at the same time. In addition, we pretreated the JAK1 or STAT3 inhibitor with testosterone to block the signaling transduction before CFT073 and J96 UPEC infection, and found the significant restoring in both the sizes of IBCs and bacterial numbers in RWPE-1 cells. Therefore, our results suggest that the suppression of STAT3 by testosterone treatment attenuate UPEC growing within IBCs and interfere with their infection to prostate cells. CONCLUSIONS: Overall, our study demonstrates that testosterone suppresses the initial infection of prostate epithelial cells by UPEC and reduces the survival of UPEC within IBCs after infection. These results indicate a critical role for STAT3 in facilitating UPEC infection and persistence, and its participation in driving testosterone-suppressive responses in prostate epithelial cells. In conclusion, this study suggests that testosterone may be beneficial in treating clinically recurrent UPEC infections and, thus, the persistent recurrence of prostatic inflammation.


Assuntos
Infecções por Escherichia coli , Escherichia coli Uropatogênica , Biofilmes , Células Epiteliais , Humanos , Masculino , Próstata , Fator de Transcrição STAT3 , Testosterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...