Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artif Organs ; 48(5): 456-471, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38230806

RESUMO

BACKGROUND: Advances in regeneration methods have brought us improved vascular scaffolds with small diameters (φ < 6 mm) for enhancing biological suitability that solve their propensity for causing intimal hyperplasia post-transplantation. METHODS: The correlation between the rehydration ratio of the hydrogel and its material concentration is obtained by adjusting the material ratio of the hydrogel solution. The vascular model with helical structure has been established and analyzed to verify the effect of helical microvascular structure on thrombosis formation by the fluid simulation methods. Then, the helical structure vascular has been fabricated by self-developed 3D bioprinter, the vascular scaffolds are freeze-dried and rehydrated in polyethylene glycol (PEG) solution. RESULTS: The experimental results showed that the hybrid hydrogel had a qualified rehydration ratio when the content of gelatin, sodium alginate, and glycerol was 5, 6, and 3 wt%. The established flow channel model can effectively reduce thrombus deposition and improve long-term patency ratio. After PEG solution modification, the contact angle of the inner wall of the vascular scaffold was less than 30°, showing better hydrophilic characteristics. CONCLUSION: In study, a small-diameter inner wall vascular scaffold with better long-term patency was successfully designed and prepared by wrinkling and PEG modification of the inner wall of the vascular scaffold. This study not only creates small-diameter vascular scaffolds with helical structure that improves the surface hydrophilicity to reduce the risk of thrombosis but also rekindles confidence in the regeneration of small caliber vascular structures.


Assuntos
Trombose , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Hidrogéis/química , Polietilenoglicóis , Gelatina , Trombose/etiologia , Trombose/prevenção & controle , Engenharia Tecidual/métodos
2.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232417

RESUMO

Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.


Assuntos
Bioimpressão , Substitutos Sanguíneos , Alginatos , Prótese Vascular , Gelatina , Hidrogéis/farmacologia , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
3.
Med Eng Phys ; 106: 103835, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35926958

RESUMO

Mechanical and thermal damage to the bone tissue during drilling process is inevitable and directly affects the postoperative recovery. According to clinical practices and present academic investigations, this study tries to reduce bone damage by experimental investigation of bone drilling by Kirschner wire considering the drilling force and temperature factors. Finite element method has been applied to modelling of the drilling process. Then, grouped experiments have been carried out using bovine femoral bone and analyzed based on the orthogonal experimental method. The influence of key parameters such as Kirschner wire bevel angle, feed speed and rotational speed on the microscopic bone chip size, drilling force, drilling temperature and hole inlet burr was analyzed to conduct comprehensive analysis and optimizations. It is certain that the chips size is closely related to drilling force and drilling temperature. The low drilling temperature does not mean that the damage area is small. The drilling process should be completed quickly at high feed rates. The lower rotational speed, Kirschner wire bevel angle, and higher feed rate help reduce the thermal damage area of the bone drill, effectively reduce the drilling force and hole entrance burrs.


Assuntos
Fios Ortopédicos , Procedimentos Ortopédicos , Animais , Osso e Ossos/cirurgia , Bovinos , Fêmur/cirurgia , Fenômenos Mecânicos , Procedimentos Ortopédicos/métodos , Temperatura
4.
Med Eng Phys ; 98: 115-124, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34848030

RESUMO

In order to improve the quality and reduce mechanical damage during bone drilling in surgeries, the three key parameters in drilling by the Kirschner wire are experimentally studied based on the response surface method (RSM). And through response surface analysis, a predictive model of each factor and response value is established. The experimental results found that when the beveled plane angle Φ = 10°, the rotational speed n = 1200 rpm, and the feed speed vf = 20 mm/min. Not only the drilling force is minimized, the delamination coefficient and the height of the hole exit burr are also the minimum. Therefore, the smaller bevel angle, the feed speed and the higher rotation speed can effectively reduce the drilling force, the delamination factor and the height of the hole exit burr, and significantly improve the drilling quality.


Assuntos
Fios Ortopédicos , Osso e Ossos , Osso e Ossos/cirurgia , Fenômenos Mecânicos , Rotação , Temperatura
5.
Micromachines (Basel) ; 12(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34945366

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Traditional autologous transplantation has become a severe issue due to insufficient donors. Artificial blood vessel is an effective method for the treatment of major vascular diseases, such as heart and peripheral blood vessel diseases. However, the traditional single-material printing technology has been unable to meet the users' demand for product functional complexity, which is not only reflected in the field of industrial manufacturing, but also in the field of functional vessel-like structure regeneration. In order to achieve the printing and forming of multi-layer vessel-like structures, this paper carries out theoretical and experimental research on the printing and forming of a multi-layer vessel-like structure based on multi-material 3D bioprinting technology. Firstly, theoretical analysis has been explored to research the relationship among the different parameters in the process of vessel forming, and further confirm the synchronous relationship among the extrusion rate of material, the tangential speed of the rotating rod, and the movement speed of the platform. Secondly, sodium alginate and gelatin have been used as the experimental materials to manufacture the vessel-like structure, and the corrected parameter of the theoretical analysis is further verified. Finally, the cell-loaded materials have been printed and analyzed, and cell viability is more than 90%, which provides support for the research of multi-layer vessel-like structure printing.

6.
Micromachines (Basel) ; 11(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878235

RESUMO

With the evolution of three-dimensional (3D) printing, many restrictive factors of 3D printing have been explored to upgrade the feasibility of 3D printing technology, such as nozzle structure, print resolution, cell viability, etc., which has attracted extensive attention due to its possibility of curing disease in tissue engineering and organ regeneration. In this paper, we have developed a novel nozzle for 3D printing, numerical simulation, and finite element analysis have been used to optimize the nozzle structure and further clarified the influence of nozzle structure parameters on material controllability. Using novel nozzle structure, we firstly adopt ANSYS-FLUENT to analyze material controllability under the different inner cavity diameter, outer cavity diameter and lead length. Secondly, the orthogonal experiments with the novel nozzle are carried out in order to verify the influence law of inner cavity diameter, outer cavity diameter, and lead length under all sorts of conditions. The experiment results show that the material P diameter can be controlled by changing the parameters. The influence degree of parameters on material P diameter is shown that lead length > inner cavity diameter > outer cavity diameter. Finally, the optimized parameters of nozzle structure have been adjusted to estimate the material P diameter in 3D printing.

7.
SLAS Technol ; 23(1): 64-69, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28592214

RESUMO

3D bioprinting is an emerging technology that drives us to construct the complicated tissues and organs consisting of various materials and cells, which has been in widespread use in tissue engineering and organ regeneration. However, the protection and accurate distribution of cells are the most urgent problems to achieve tissue and organ reconstruction. In this article, a multinozzle multichannel temperature deposition and manufacturing (MTDM) system is proposed to fabricate a blood vessel with heterogeneous materials and gradient hierarchical porous structures, which enables not only the reconstruction of a blood vessel with an accurate 3D model structure but also the capacity to distribute bioactive materials such as growth factors, nutrient substance, and so on. In addition, a coaxial focusing nozzle is proposed and designed to extrude the biomaterial and encapsulation material, which can protect the cell from damage. In the MTDM system, the tubular structure of a blood vessel was successfully fabricated with the different biomaterials, which proved that the MTDM system has a potential application prospect in tissue engineering and organ regeneration.


Assuntos
Bioimpressão/instrumentação , Bioimpressão/métodos , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/fisiologia , Impressão Tridimensional , Animais , Humanos , Camundongos , Porosidade , Temperatura
8.
Micromachines (Basel) ; 8(8)2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30400427

RESUMO

3D printing has emerged as one of the modern tissue engineering techniques that could potentially form scaffolds (with or without cells), which is useful in treating cardiovascular diseases. This technology has attracted extensive attention due to its possibility of curing disease in tissue engineering and organ regeneration. In this paper, we have developed a novel rotary forming device, prepared an alginate⁻gelatin solution for the fabrication of vessel-like structures, and further proposed a theoretical model to analyze the parameters of motion synchronization. Using this rotary forming device, we firstly establish a theoretical model to analyze the thickness under the different nozzle extrusion speeds, nozzle speeds, and servo motor speeds. Secondly, the experiments with alginate⁻gelatin solution are carried out to construct the vessel-like structures under all sorts of conditions. The experiment results show that the thickness cannot be adequately predicted by the theoretical model and the thickness can be controlled by changing the parameters. Finally, the optimized parameters of thickness have been adjusted to estimate the real thickness in 3D printing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...