Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 53(6): 881-894, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33972779

RESUMO

Esophageal squamous cell carcinomas (ESCCs) harbor recurrent chromosome 3q amplifications that target the transcription factor SOX2. Beyond its role as an oncogene in ESCC, SOX2 acts in development of the squamous esophagus and maintenance of adult esophageal precursor cells. To compare Sox2 activity in normal and malignant tissue, we developed engineered murine esophageal organoids spanning normal esophagus to Sox2-induced squamous cell carcinoma and mapped Sox2 binding and the epigenetic and transcriptional landscape with evolution from normal to cancer. While oncogenic Sox2 largely maintains actions observed in normal tissue, Sox2 overexpression with p53 and p16 inactivation promotes chromatin remodeling and evolution of the Sox2 cistrome. With Klf5, oncogenic Sox2 acquires new binding sites and enhances activity of oncogenes such as Stat3. Moreover, oncogenic Sox2 activates endogenous retroviruses, inducing expression of double-stranded RNA and dependence on the RNA editing enzyme ADAR1. These data reveal SOX2 functions in ESCC, defining targetable vulnerabilities.


Assuntos
Adenosina Desaminase/metabolismo , Epigenoma , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Retrovirus Endógenos/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Interferons/metabolismo , Íntrons/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Organoides/patologia , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , Fatores de Transcrição SOXB1/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Clin Cancer Res ; 26(13): 3431-3442, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32209571

RESUMO

PURPOSE: Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. EXPERIMENTAL DESIGN: We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunologic effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. RESULTS: We show that multiplex gene editing of mouse lung organoids using the CRISPR-Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I IFN and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T-cell-mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunologic features of WEE1 inhibition are further enhanced by the addition of anti-PD-1 therapy. CONCLUSIONS: We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage-inducing therapies in the treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Modelos Animais de Doenças , Neoplasias Pulmonares/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Transgênicos , Organoides/efeitos dos fármacos , Animais , Biomarcadores , Biomarcadores Tumorais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Edição de Genes , Expressão Gênica , Engenharia Genética , Humanos , Imuno-Histoquímica , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nat Genet ; 52(2): 219-230, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025000

RESUMO

Somatic alterations in cancer genes are being detected in normal and premalignant tissue, thus placing greater emphasis on gene-environment interactions that enable disease phenotypes. By combining early genetic alterations with disease-relevant exposures, we developed an integrative mouse model to study gastric premalignancy. Deletion of Trp53 in gastric cells confers a selective advantage and promotes the development of dysplasia in the setting of dietary carcinogens. Organoid derivation from dysplastic lesions facilitated genomic, transcriptional and functional evaluation of gastric premalignancy. Cell cycle regulators, most notably Cdkn2a, were upregulated by p53 inactivation in gastric premalignancy, serving as a barrier to disease progression. Co-deletion of Cdkn2a and Trp53 in dysplastic gastric organoids promoted cancer phenotypes but also induced replication stress, exposing a susceptibility to DNA damage response inhibitors. These findings demonstrate the utility of mouse models that integrate genomic alterations with relevant exposures and highlight the importance of gene-environment interactions in shaping the premalignant state.


Assuntos
Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/etiologia , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Exposição Ambiental/efeitos adversos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos , Metilnitrosoureia/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Organoides/patologia , Lesões Pré-Cancerosas/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
4.
Nat Med ; 24(7): 968-977, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29808010

RESUMO

The role of KRAS, when activated through canonical mutations, has been well established in cancer1. Here we explore a secondary means of KRAS activation in cancer: focal high-level amplification of the KRAS gene in the absence of coding mutations. These amplifications occur most commonly in esophageal, gastric and ovarian adenocarcinomas2-4. KRAS-amplified gastric cancer models show marked overexpression of the KRAS protein and are insensitive to MAPK blockade owing to their capacity to adaptively respond by rapidly increasing KRAS-GTP levels. Here we demonstrate that inhibition of the guanine-exchange factors SOS1 and SOS2 or the protein tyrosine phosphatase SHP2 can attenuate this adaptive process and that targeting these factors, both genetically and pharmacologically, can enhance the sensitivity of KRAS-amplified models to MEK inhibition in both in vitro and in vivo settings. These data demonstrate the relevance of copy-number amplification as a mechanism of KRAS activation, and uncover the therapeutic potential for targeting of these tumors through combined SHP2 and MEK inhibition.


Assuntos
Neoplasias Esofágicas/genética , Amplificação de Genes , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Neoplasias Esofágicas/patologia , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Piridonas/farmacologia , Pirimidinas/farmacologia , Pirimidinonas/farmacologia , Neoplasias Gástricas/patologia
5.
Nat Commun ; 8: 13897, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059068

RESUMO

Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Receptores ErbB/antagonistas & inibidores , Neoplasias Esofágicas/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago , Amplificação de Genes , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Immunol Res ; 3(10): 1123-1129, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26081225

RESUMO

Esophageal adenocarcinoma is an increasingly common disease with a dismal 5-year survival rate of 10% to 15%. In the first systematic evaluation of the PD-1 pathway in esophageal adenocarcinoma, we identify expression of PD-L2 in cancer cells in 51.7% of esophageal adenocarcinomas. Epithelial PD-L1 was expressed on only 2% of cases, although PD-L1(+) immune cells were observed in 18% of esophageal adenocarcinomas. We also evaluated expression in the precursor lesion of esophageal adenocarcinoma, Barrett's esophagus, which emerges following gastric reflux-induced esophageal inflammation, and found PD-L2 expression in Barrett's esophagus but not in non-Barrett's esophagus esophagitis. Because the progression from squamous esophagitis to Barrett's esophagus is accompanied by a transition from a TH1 to TH2 immune response, we hypothesized that the TH2 cytokines IL4/IL13 could contribute to PD-L2 induction. We confirmed that these cytokines can augment PD-L2 expression in esophageal adenocarcinoma cell lines. These results suggest that the inflammatory environment in Barrett's esophagus and esophageal adenocarcinoma may contribute to the expression of PD-L2. Furthermore, the potential for PD-1 receptor blockade to be effective in esophageal adenocarcinomas with epithelial PD-L2 or immune cell PD-L1 expression should be evaluated in clinical trials.


Assuntos
Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Neoplasias Esofágicas/metabolismo , Mucosa/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Idoso , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mucosa/patologia , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Proteína 2 Ligante de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...