Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 30(7): 2191-2200, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31418221

RESUMO

Based on hydrogen and oxygen stable isotopes in precipitation and meteorological data over Shaanxi-Gansu-Ningxia provided by the Global Network of Isotopes in Precipitation (GNIP) and in previous literature, the spatial and temporal variations of oxygen stable isotopes in precipitation and their driving factors were analyzed, the local meteoric water line (LMWL) functions were established. The results showed that the slope and intercept of the LMWL changed in the order of Gansu

Assuntos
Chuva , Vapor , Monitoramento Ambiental , Isótopos de Oxigênio , Estações do Ano
2.
Ying Yong Sheng Tai Xue Bao ; 29(5): 1479-1488, 2018 May.
Artigo em Chinês | MEDLINE | ID: mdl-29797880

RESUMO

The precipitation isotope data and meteorological data of eight stations provided by GNIP (Global Network for Isotopes in Precipitation) and two stations from the present study, combined with HYSPLIT model and water droplet evaporation model were used to examine the spatial and temporal distribution of precipitation δ18O and d values in Northwest China. The secondary evaporative effect of existence was evaluated and then quantitatively discussed, with the sensitive factors of secondary evaporative effect being considered. The results showed that during the summer monsoon, the δ18O and d values decreased from south to north in Xinjiang, while the δ18O value increased but d values decreased from south to north and from east to west of Shaanxi-Gansu-Ningxia region. During the winter monsoon, the δ18O value decreased from east to west in whole Northwest region, while the d value increased from south to north in Xinjiang, decreased from south to north and increased slightly from east to west in Shanxi-Gansu-Ningxia. The slope and intercept (6.80, -0.07) of the atmospheric precipitation line in the summer monsoon period was significantly lower than that of annual mean (7.27, 3.37) and winter monsoon period (7.46, 6.07), indicating that the secondary evaporation was stronger during the summer monsoon. The evaporation ratio in the summer monsoon was 4.49%, which was higher than 3.65% in the winter monsoon. However, the evaporation ratio of the winter monsoon was higher than the summer monsoon around of Loess Plateau, which might closely relate to the increasing drought of the Loess Plateau in recent years. Finally, the intensity of secondary evaporation decreased with increasing relative humidity, precipitation and vapor pressure but increased with increasing temperature (greater than 0 ℃). The influences of those factors (humidity, precipitation, temperature and vapor pressure) on the secondary evaporation were dependent on the differences of ranges.


Assuntos
Monitoramento Ambiental , Chuva/química , China , Umidade , Isótopos de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...