Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402881, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967154

RESUMO

In this work, three dimensional (3D) self-supported Ni-FeOH@Ni-FeP needle arrays with core-shell heterojunction structure are fabricated via in situ hydroxide growth over Ni-FeP surface. The as-prepared electrodes show an outstanding oxygen evolution reaction (OER) performance, only requiring the low overpotential of 232 mV to reach 200 mA cm-2 with the Tafel slop of 40 mV dec-1. For overall water splitting, an alkaline electrolyzer with these electrodes only requires a cell voltage of 2.14 V to reach 1 A cm-2. Mechanistic investigations for such excellent electrocatalytic performances are utilized by in situ Raman spectroscopy in conjunction with density functional theory (DFT) calculations. The computation results present that Ni-FeOH@Ni-FeP attains better intrinsic conductivity and the D-band center (close to that of the ideal catalyst), thus giving superior excellent catalytic performances. Likewise, the surface Ni-FeOH layer can improve the structural stability of Ni-FeP cores and attenuate the eventual formation of irreversible FeOOH products. More importantly, the appearance of FeOOH intermediates can effectively decrease the energy barrier of NiOOH intermediates, and then rapidly accelerate the sluggish reaction dynamics, as well as further enhance the electrocatalytic activities, reversibility and cycling stability.

2.
Angew Chem Int Ed Engl ; 63(14): e202317135, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332748

RESUMO

Organic electrode materials are promising for next-generation energy storage materials due to their environmental friendliness and sustainable renewability. However, problems such as their high solubility in electrolytes and low intrinsic conductivity have always plagued their further application. Polymerization to form conjugated organic polymers can not only inhibit the dissolution of organic electrodes in the electrolyte, but also enhance the intrinsic conductivity of organic molecules. Herein, we synthesized a new conjugated organic polymer (COPs) COP500-CuT2TP (poly [5,10,15,20-tetra(2,2'-bithiophen-5-yl) porphyrinato] copper (II)) by electrochemical polymerization method. Due to the self-exfoliation behavior, the porphyrin cathode exhibited a reversible discharge capacity of 420 mAh g-1, and a high specific energy of 900 Wh Kg-1 with a first coulombic efficiency of 96 % at 100 mA g-1. Excellent cycling stability up to 8000 cycles without capacity loss was achieved even at a high current density of 5 A g-1. This highly conjugated structure promotes COP500-CuT2TP combined high energy density, high power density, and good cycling stability, which would open new opportunity for the designable and versatile organic electrodes for electrochemical energy storage.

3.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385880

RESUMO

We present a language model Affordable Cancer Interception and Diagnostics (ACID) that can achieve high classification performance in the diagnosis of cancer exclusively from using raw cfDNA sequencing reads. We formulate ACID as an autoregressive language model. ACID is pretrained with language sentences that are obtained from concatenation of raw sequencing reads and diagnostic labels. We benchmark ACID against three methods. On testing set subjected to whole-genome sequencing, ACID significantly outperforms the best benchmarked method in diagnosis of cancer [Area Under the Receiver Operating Curve (AUROC), 0.924 versus 0.853; P < 0.001] and detection of hepatocellular carcinoma (AUROC, 0.981 versus 0.917; P < 0.001). ACID can achieve high accuracy with just 10 000 reads per sample. Meanwhile, ACID achieves the best performance on testing sets that were subjected to bisulfite sequencing compared with benchmarked methods. In summary, we present an affordable, simple yet efficient end-to-end paradigm for cancer detection using raw cfDNA sequencing reads.


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Área Sob a Curva , Ácidos Nucleicos Livres/genética , Idioma , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética
4.
Angew Chem Int Ed Engl ; 63(4): e202316449, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059893

RESUMO

Owing to outstanding performances, nickel-based electrocatalysts are commonly used in electrochemical alcohol oxidation reactions (AORs), and the active phase is usually vacancy-rich nickel oxide/hydroxide (NiOx Hy ) species. However, researchers are not aware of the catalytic role of atom vacancy in AORs. Here, we study vacancy-induced catalytic mechanisms for AORs on NiOx Hy species. As to AORs on oxygen-vacancy-poor ß-Ni(OH)2 , the only redox mediator is electrooxidation-induced electrophilic lattice oxygen species, which can only catalyze the dehydrogenation process (e.g., the electrooxidation of primary alcohol to carboxylic acid) instead of the C-C bond cleavage. Hence, vicinal diol electrooxidation reaction involving the C-C bond cleavage is not feasible with oxygen-vacancy-poor ß-Ni(OH)2 . Only through oxygen vacancy-induced adsorbed oxygen-mediated mechanism, can oxygen-vacancy-rich NiOx Hy species catalyze the electrooxidation of vicinal diol to carboxylic acid and formic acid accompanied with the C-C bond cleavage. Crucially, we examine how vacancies and vacancy-induced catalytic mechanisms work during AORs on NiOx Hy species.

5.
iScience ; 26(12): 108175, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047071

RESUMO

Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%-83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910-0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87-0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools.

6.
Nat Commun ; 14(1): 8326, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097577

RESUMO

Low temperatures severely impair the performance of lithium-ion batteries, which demand powerful electrolytes with wide liquidity ranges, facilitated ion diffusion, and lower desolvation energy. The keys lie in establishing mild interactions between Li+ and solvent molecules internally, which are hard to achieve in commercial ethylene-carbonate based electrolytes. Herein, we tailor the solvation structure with low-ε solvent-dominated coordination, and unlock ethylene-carbonate via electronegativity regulation of carbonyl oxygen. The modified electrolyte exhibits high ion conductivity (1.46 mS·cm-1) at -90 °C, and remains liquid at -110 °C. Consequently, 4.5 V graphite-based pouch cells achieve ~98% capacity over 200 cycles at -10 °C without lithium dendrite. These cells also retain ~60% of their room-temperature discharge capacity at -70 °C, and miraculously retain discharge functionality even at ~-100 °C after being fully charged at 25 °C. This strategy of disrupting solvation dominance of ethylene-carbonate through molecular charge engineering, opens new avenues for advanced electrolyte design.

7.
Proc Natl Acad Sci U S A ; 120(30): e2301622120, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459527

RESUMO

Potassium vanadium fluorophosphate (KVPO4F) is regarded as a promising cathode candidate for potassium-ion batteries due to its high working voltage and satisfactory theoretical capacity. However, the usage of electrochemically inactive binders and redundant current collectors typically results in inferior electrochemical performance and low energy density, thus implying the important role of rational electrode structure design. Herein, we have reported a scalable and cost-effective synthesis of a cellulose-derived KVPO4F self-supporting electrode, which features a special surface hydroxyl chemistry, three-dimensional porous and conductive framework, as well as super flexible and stable architecture. The cellulose not only serves as a flexible substrate, a pore-forming agent, and a versatile binder for KVPO4F/conductive carbon but also enhances the K-ion migration ability. Benefiting from the special hydroxyl chemistry-induced storage mechanism and electrode structural stability, the flexible freestanding KVPO4F cathode exhibits high-rate performance (53.0% capacity retention with current densities increased 50-fold, from 0.2 C to 10 C) and impressive cycling stability (capacity retention up to 74.9% can be achieved over 1,000 cycles at a rate of 5 C). Such electrode design and surface engineering strategies, along with a deeper understanding of potassium storage mechanisms, provide invaluable guidance for better electrode design to boost the performance of potassium-ion energy storage systems.

8.
Natl Sci Rev ; 10(5): nwad099, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37287808

RESUMO

Aqueous organic electrosynthesis such as nucleophile oxidation reaction (NOR) is an economical and green approach. However, its development has been hindered by the inadequate understanding of the synergy between the electrochemical and non-electrochemical steps. In this study, we unravel the NOR mechanism for the primary alcohol/vicinal diol electrooxidation on NiO. Thereinto, the electrochemical step is the generation of Ni3+-(OH)ads, and the spontaneous reaction between Ni3+-(OH)ads and nucleophiles is an electrocatalyst-induced non-electrochemical step. We identify that two electrophilic oxygen-mediated mechanisms (EOMs), EOM involving hydrogen atom transfer (HAT) and EOM involving C-C bond cleavage, play pivotal roles in the electrooxidation of primary alcohol to carboxylic acid and the electrooxidation of vicinal diol to carboxylic acid and formic acid, respectively. Based on these findings, we establish a unified NOR mechanism for alcohol electrooxidation and deepen the understanding of the synergy between the electrochemical and non-electrochemical steps during NOR, which can guide the sustainable electrochemical synthesis of organic chemicals.

9.
Mater Horiz ; 10(9): 3680-3693, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37365987

RESUMO

Aqueous zinc-ion batteries (ZIBs) are promising candidates for next-generation energy storage systems due to their intrinsic safety, environmental friendliness, and low cost. However, the uncontrollable Zn dendrite growth during cycling is still a critical challenge for the long-term operation of ZIBs, especially under harsh lean-Zn conditions. Herein, we report nitrogen and sulfur-codoped carbon quantum dots (N,S-CDs) as zincophilic electrolyte additives to regulate the Zn deposition behaviors. The N,S-CDs with abundant electronegative groups can attract Zn2+ ions and co-deposit with Zn2+ ions on the anode surface, inducing a parallel orientation of the (002) crystal plane. The deposition of Zn preferentially along the (002) crystal direction fundamentally avoids the formation of Zn dendrites. Moreover, the co-depositing/stripping feature of N,S-CDs under an electric field force ensures the reproducible and long-lasting modulation of the Zn anode stability. Benefiting from these two unique modulation mechanisms, stable cyclability of the thin Zn anodes (10 and 20 µm) at a high depth of discharge (DOD) of 67% and high Zn||Na2V6O16·3H2O (NVO, 11.52 mg cm-2) full-cell energy density (144.98 W h Kg-1) at a record-low negative/positive (N/P) capacity ratio of 1.05 are achieved using the N,S-CDs as an additive in ZnSO4 electrolyte. Our findings not only offer a feasible solution for developing actual high-energy density ZIBs but also provide in-depth insights into the working mechanism of CDs in regulating Zn deposition behaviors.

10.
Adv Mater ; 35(40): e2303730, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358065

RESUMO

The softness of sulfur sublattice and rotational PS4 tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa2 PO8 and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li-O polyhedral distortion and Li-ion correlation, which are controlled by doping strategies. The liquid-like conduction enables a high ionic conductivity (1.2 mS cm-1 at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm-2 for Li/LiTa2 PO8 /Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.

11.
Small ; 19(41): e2303296, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37294167

RESUMO

Hard Carbon have become the most promising anode candidates for sodium-ion batteries, but the poor rate performance and cycle life remain key issues. In this work, N-doped hard carbon with abundant defects and expanded interlayer spacing is constructed by using carboxymethyl cellulose sodium as precursor with the assistance of graphitic carbon nitride. The formation of N-doped nanosheet structure is realized by the CN• or CC• radicals generated through the conversion of nitrile intermediates in the pyrolysis process. This greatly enhances the rate capability (192.8 mAh g-1 at 5.0 A g-1 ) and ultra-long cycle stability (233.3 mAh g-1 after 2000 cycles at 0.5 A g-1 ). In situ Raman spectroscopy, ex situ X-ray diffraction and X-ray photoelectron spectroscopy analysis in combination with comprehensive electrochemical characterizations, reveal that the interlayer insertion coordinated quasi-metallic sodium storage in the low potential plateau region and adsorption storage in the high potential sloping region. The first-principles density functional theory calculations further demonstrate strong coordination effect on nitrogen defect sites to capture sodium, especially with pyrrolic N, uncovering the formation mechanism of quasi-metallic bond in the sodium storage. This work provides new insights into the sodium storage mechanism of high-performance carbonaceous materials, and offers new opportunities for better design of hard carbon anode.

12.
iScience ; 26(5): 106536, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37187700

RESUMO

Exponential accumulation of single-cell transcriptomes poses great challenge for efficient assimilation. Here, we present an approach entitled generative pretraining from transcriptomes (tGPT) for learning feature representation of transcriptomes. tGPT is conceptually simple in that it autoregressive models the ranking of a gene in the context of its preceding neighbors. We developed tGPT with 22.3 million single-cell transcriptomes and used four single-cell datasets to evalutate its performance on single-cell analysis tasks. In addition, we examine its applications on bulk tissues. The single-cell clusters and cell lineage trajectories derived from tGPT are highly aligned with known cell labels and states. The feature patterns of tumor bulk tissues learned by tGPT are associated with a wide range of genomic alteration events, prognosis, and treatment outcome of immunotherapy. tGPT represents a new analytical paradigm for integrating and deciphering massive amounts of transcriptome data and it will facilitate the interpretation and clinical translation of single-cell transcriptomes.

13.
Adv Mater ; 35(16): e2209833, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36780277

RESUMO

Solid state potassium (K) metal batteries are intriguing in grid-scale energy storage, benefiting from the low cost, safety, and high energy density. However, their practical applications are impeded by poor K/solid electrolyte (SE) interfacial contact and limited capacity caused by the low K self-diffusion coefficient, dendrite growth, and intrinsically low melting point/soft features of metallic K. Herein, a fused-modeling strategy using potassiophilic carbon allotropes molted with K is demonstrated that can enhance the electrochemical performance/stability of the system via promoting K diffusion kinetics (2.37 × 10-8 cm2 s-1 ), creating a low interfacial resistance (≈1.3 Ω cm2 ), suppressing dendrite growth, and maintaining mechanical/thermal stability at 200 °C. A homogeneous/stable K stripping/plating is consequently implemented with a high current density of 2.8 mA cm-2 (at 25 °C) and a record-high areal capacity of 11.86 mAh cm-2 (at 0.2 mA cm-2 ). The enhanced K diffusion kinetics contribute to sustaining intimate interfacial contact, stabilizing the stripping/plating at high current densities. Full cells coupling ultrathin K-C composite anodes (≈50 µm) with Prussian blue cathodes and ß/ß″-Al2 O3 SEs deliver a high energy density of 389 Wh kg-1 with a retention of 94.4% after 150 cycles and fantastic performances at -20 to 120 °C.

14.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35947966

RESUMO

Integration of accumulative large-scale single-cell transcriptomes requires scalable batch-correction approaches. Here we propose Fugue, a simple and efficient batch-correction method that is scalable for integrating super large-scale single-cell transcriptomes from diverse sources. The core idea of the method is to encode batch information as trainable parameters and add it to single-cell expression profile; subsequently, a contrastive learning approach is used to learn feature representation of the additive expression profile. We demonstrate the scalability of Fugue by integrating all single cells obtained from the Human Cell Atlas. We benchmark Fugue against current state-of-the-art methods and show that Fugue consistently achieves improved performance in terms of data alignment and clustering preservation. Our study will facilitate the integration of single-cell transcriptomes at increasingly large scale.


Assuntos
Algoritmos , Transcriptoma , Benchmarking , Análise por Conglomerados , Humanos
15.
ACS Appl Mater Interfaces ; 14(31): 36079-36091, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881687

RESUMO

As emerging energy storage devices, aqueous zinc ion batteries (AZIBs) with outstanding advantages of high safety, high energy density, and environmental friendliness have attracted much research interest. Herein, the favorable thornlike MnO2 micro-/nanostructures (PDA@MnO2@NMC) are rationally constructed by the incorporation of both carbon substrates (NMC) and polydopamine (PDA) surface modifications. Ex situ X-ray diffraction and Raman characteristics show the formation of MnOOH and ZnMn2O4 products, corresponding to H+ and Zn2+ insertions in two discharge platforms. Density functional theory (DFT) calculations also demonstrate that PDA can firmly anchor onto MnO2 surfaces and prevent the dissolution of MnOOH. In addition, PDA with more hydrophilic groups can capture more H+ together with the increased surface capacitance and the extension of the first discharge platform, while the NMC carbon substrate can provide abundant active sites for the overgrown MnO2 nanowires, improve the conductivity, and promote fast ion and electron transportations. Further, electrochemical impedance spectroscopy (EIS) and GITT results show that the ohmic resistance of PDA@MnO2@NMC decreases to almost half and, in particular, the ion diffusion coefficient increases more than 30 times of pure MnO2. As such, PDA@MnO2@NMC in the AZIB cathode exhibits excellent electrochemical performance compared to the pure MnO2, which is expected to have favorable competitiveness in energy storage devices.

16.
Nanomicro Lett ; 14(1): 146, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861905

RESUMO

Studies have found that oxygen-rich-containing functional groups in carbon-based materials can be used as active sites for the storage performance of K+, but the basic storage mechanism is still unclear. Herein, we construct and optimize 3D honeycomb-like carbon grafted with plentiful COOH/C = O functional groups (OFGC) as anodes for potassium ion batteries. The OFGC electrode with steady structure and rich functional groups can effectively contribute to the capacity enhancement and the formation of stable solid electrolyte interphase (SEI) film, achieving a high reversible capacity of 230 mAh g-1 at 3000 mA g-1 after 10,000 cycles (almost no capacity decay) and an ultra-long cycle time over 18 months at 100 mA g-1. The study results revealed the reversible storage mechanism between K+ and COOH/C = O functional groups by forming C-O-K compounds. Meanwhile, the in situ electrochemical impedance spectroscopy proved the highly reversible and rapid de/intercalation kinetics of K+ in the OFGC electrode, and the growth process of SEI films. In particular, the full cells assembled by Prussian blue cathode exhibit a high energy density of 113 Wh kg-1 after 800 cycles (calculated by the total mass of anode and cathode), and get the light-emitting diodes lamp and ear thermometer running.

17.
ACS Appl Mater Interfaces ; 14(22): 25257-25266, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609249

RESUMO

Electrochemical CO2 reduction technology can combine renewable energy sources with carbon capture and storage to convert CO2 into industrial chemicals. However, the catalytic activity under high current density and long-term electrocatalysis process may deteriorate due to agglomeration, catalytic polymerization, element dissolution, and phase change of active substances. Here, we report a scalable and facile method to fabricate aligned InS nanorods by chemical dealloying. The resulting aligned InS nanorods exhibit a remarkable CO2RR activity for selective formate production at a wide potential window, achieving over 90% faradic efficiencies from -0.5 to -1.0 V vs reversible hydrogen electrode (RHE) under gas diffusion cell, as well as continuously long-term operation without deterioration. In situ electrochemical Raman spectroscopy measurements reveal that the *OCHO* species (Bidentate adsorption) are the intermediates that occurred in the reaction of CO2 reduction to formate. Meanwhile, the presence of sulfur can accelerate the activation of H2O to react with CO2, promoting the formation of *OCHO* intermediates on the catalyst surface. Significantly, through additional coupling anodic methanol oxidation reaction (MOR), the unusual two-electrode electrolytic system allows highly energy-efficient and value-added formate manufacturing, thereby reducing energy consumption.

18.
Small ; 18(22): e2201719, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506200

RESUMO

Na3 V2 (PO4 )2 F3 has attracted wide attention due to its high voltage platform, and stable crystal structure. However, its application is limited by the low electronic conductivity and the ease formation of impurity. In this paper, the spherical Br-doped Na3 V2 (PO4 )2 F3 /C is successfully obtained by a one-step spray drying technology. The hard template polytetrafluoroethylene (PTFE) supplements the loss of fluorine, forming porous structure that accelerates the infiltration of electrolyte. The soft template cetyltrimethylammonium bromide (CTAB) enables doping of bromine and can also control the fluorine content, meanwhile, the self-assembly effect strengthens the structure and refines the size of spherical particles. The loss, compensation, and regulation mechanism of fluorine are investigated. The Br-doped Na3 V2 (PO4 )2 F3 /C sphere exhibits superior rate capability with the capacities of 116.1, 105.1, and 95.2 mAh g-1 at 1, 10, and 30 C, and excellent cyclic performance with 98.3% capacity retention after 1000 cycles at 10 C. The density functional theory (DFT) calculation shows weakened charge localization and enhanced conductivity, meanwhile the diffusion energy barrier of sodium ions is reduced with Br doping. This paper proposes a strategy to construct fluorine-containing polyanions cathode, which enables the precise regulation of structure and morphology, thus leading to superior electrochemical performance.

19.
Adv Mater ; 34(27): e2105320, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35472674

RESUMO

The nucleophile oxidation reaction (NOR) is of enormous significance for organic electrosynthesis and coupling for hydrogen generation. However, the nonuniform NOR mechanism limits its development. For the NOR, involving electrocatalysis and organic chemistry, both the electrochemical step and non-electrochemical process should be taken into account. The NOR of nickel-based hydroxides includes the electrogenerated dehydrogenation of the Ni2+ -OH bond and a spontaneous non-electrochemical process; the former determines the electrochemical activity, and the nucleophile oxidation pathway depends on the latter. Herein, the space-confinement-induced synthesis of Ni3 Fe layered double hydroxide intercalated with single-atom-layer Pt nanosheets (Ni3 Fe LDH-Pt NS) is reported. The synergy of interlayer Pt nanosheets and multiple defects activates Ni-OH bonds, thus exhibiting an excellent NOR performance. The spontaneous non-electrochemical steps of the NOR are revealed, such as proton-coupled electron transfer (PCET; Ni3+ -O + X-H = Ni2+ -OH + X• ), hydration, and rearrangement. Hence, the reaction pathway of the NOR is deciphered, which not only helps to perfect the NOR mechanism, but also provides inspiration for organic electrosynthesis.

20.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35048121

RESUMO

Advancement in single-cell RNA sequencing leads to exponential accumulation of single-cell expression data. However, there is still lack of tools that could integrate these unlimited accumulations of single-cell expression data. Here, we presented a universal approach iSEEEK for integrating super large-scale single-cell expression via exploring expression rankings of top-expressing genes. We developed iSEEEK with 11.9 million single cells. We demonstrated the efficiency of iSEEEK with canonical single-cell downstream tasks on five heterogenous datasets encompassing human and mouse samples. iSEEEK achieved good clustering performance benchmarked against well-annotated cell labels. In addition, iSEEEK could transfer its knowledge learned from large-scale expression data on new dataset that was not involved in its development. iSEEEK enables identification of gene-gene interaction networks that are characteristic of specific cell types. Our study presents a simple and yet effective method to integrate super large-scale single-cell transcriptomes and would facilitate translational single-cell research from bench to bedside.


Assuntos
Análise de Célula Única , Transcriptoma , Animais , Análise por Conglomerados , Redes Reguladoras de Genes , Camundongos , Análise de Célula Única/métodos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...