Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
ACS Nano ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981052

RESUMO

High-entropy alloys (HEAs) have aroused extensive attention in the field of catalysis. However, due to the integration of multiple active sites in HEA, it exhibits excessive adsorption behavior resulting in difficult desorption of active species from the catalyst surfaces, which hinders the catalytic efficiency. Therefore, adjusting the adsorption strength of the active site in HEA to enhance the catalytic activity is of great importance. By introducing rare-earth (RE) elements into the high-entropy alloy, the delocalization of 4f electrons can be achieved through the interaction between the multimetal active site and RE, which benefits to regulate the adsorption strength of the HEA surface. Herein, the RE Ce-modified hexagonal-close-packed PtRuFeCoNiZn-Ce/C HEAs are synthesized and showed an excellent electrocatalytic activity for hydrogen evolution reaction and oxygen evolution reaction with ultralow overpotentials of 4, 7 and 156, 132 mV, respectively, to reach 10 mA cm-2 in 0.5 M H2SO4 and 1.0 M KOH solutions, and the assembled water electrolysis cell only requires a voltage of 1.43 V to reach 10 mA cm-2, which is much better than the performance of PtRuFeCoNiZn/C. Combined with the results of in situ attenuated total reflection infrared spectroscopy and density functional theory (DFT), the fundamental reasons for the improvement of catalyst activity come from two aspects: (i) local lattice distortion of HEA caused by the introduction of RE with large atomic radius induces 4f orbital electron delocalization of RE elements and enhances electron exchange between RE and active sites. (ii) The electronegativity difference between the RE element and the active site forms a surface dipole in HEA, which optimizes the adsorption of the active intermediate by the HEA surface site. This study provides an insightful idea for the rational design of high-performance HEA- and RE-based electrocatalysts.

2.
Nat Commun ; 15(1): 5751, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982071

RESUMO

Oxygen vacancy (Ov) is an anionic defect widely existed in metal oxide lattice, as exemplified by CeO2, TiO2, and ZnO. As Ov can modify the band structure of solid, it improves the physicochemical properties such as the semiconducting performance and catalytic behaviours. We report here a new type of Ov as an intrinsic part of a perfect crystalline surface. Such non-defect Ov stems from the irregular hexagonal sawtooth-shaped structure in the (111) plane of trivalent rare earth oxides (RE2O3). The materials with such intrinsic Ov structure exhibit excellent performance in ammonia decomposition reaction with surface Ru active sites. Extremely high H2 formation rate has been achieved at ~1 wt% of Ru loading over Sm2O3, Y2O3 and Gd2O3 surface, which is 1.5-20 times higher than reported values in the literature. The discovery of intrinsic Ov suggests great potentials of applying RE oxides in heterogeneous catalysis and surface chemistry.

3.
Chem Asian J ; 19(11): e202400175, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38630005

RESUMO

Alkaline earth (AE) metal complexes have garnered significant interest in various functional fields due to their nontoxicity, low density, and low cost. However, there is a lack of systematic investigation into the structural characteristics and physical properties of AE-metal-organic frameworks (MOFs). In this research, we synthesized isostructural MOFs consisting of AE4(µ4-Cl) clusters bridged by benzo-(1,2;3,4;5,6)-tris(thiophene-2'-carboxylic acid) (BTTC3-) ligands. The resulting structure forms a truncated octahedral cage denoted as [AE4(m4-Cl)]6(BTTC)8, which further linked to a porous three-dimensional framework. Among the investigated AE ions (Ca, Sr, and Ba), the Ca4-MOF demonstrated good chemical stability in water compared to Sr4-MOF and Ba4-MOF. The N2 adsorption and solid-state UV-vis-NIR absorption behaviors were evaluated for all AE4-MOFs, showing similar trends among the different metal ions. Additionally, the proton conduction study revealed that the Ca4-MOF exhibited ultra-high proton conductivity, reaching 3.52×10-2 S cm-1 at 343 K and 98 % RH. Notably, the introduction of LiCl via guest exchange resulted in an improved proton conduction of up to 6.36×10-2 S cm-1 under similar conditions in the modified LiCl@Ca4-MOF. The findings shed light on the regulation of physical properties and proton conductivity of AE-MOFs, providing valuable insights for their potential applications in various fields.

4.
Small ; : e2400662, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534137

RESUMO

Developing high-performance electrocatalysts for alkaline hydrogen evolution reaction (HER) is crucial for producing green hydrogen, yet it remains challenging due to the sluggish kinetics in alkaline environments. Pt is located near the peak of HER volcano plot, owing to its exceptional performance in hydrogen adsorption and desorption, and Rh plays an important role in H2O dissociation. Lanthanides (Ln) are commonly used to modulate the electronic structure of materials and further influence the adsorption/desorption of reactants, intermediates, and products, and noble metal-Ln alloys are recognized as effective platforms where Ln elements regulate the catalytic properties of noble metals. Here Pt1.5Rh1.5Tm alloy is synthesized using the sodium vapor reduction method. This alloy demonstrates superior catalytic activity, being 4.4 and 6.6 times more effective than Pt/C and Rh/C, respectively. Density Functional Theory (DFT) calculations reveal that the upshift of d-band center and the charge transfer induced by alloying promote adsorption and dissociation of H2O, making Pt1.5Rh1.5Tm alloy more favorable for the alkaline HER reaction, both kinetically and thermodynamically.

5.
Small ; 20(12): e2307052, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946708

RESUMO

Design of highly efficient electrocatalysts for alkaline hydrogen evolution reaction (HER) is of paramount importance for water electrolysis, but still a considerable challenge because of the slow HER kinetics in alkaline environments. Alloying is recognized as an effective strategy to enhance the catalytic properties. Lanthanides (Ln) are recognized as an electronic and structural regulator, attributed to their unique 4f electron behavior and the phenomenon known as lanthanide contraction. Here, a new class of Rh3Ln intermetallics (IMs) are synthesized using the sodium vapor reduction method. The alloying process induced an upshift of the d-band center and electron transfer from Ln to Rh, resulting in optimized adsorption and dissociation energies for H2O molecules. Consequently, Rh3Tb IMs exhibited outstanding HER activity in both alkaline environments and seawater, displaying an overpotential of only 19 mV at 10 mA cm-2 and a Tafel slope of 22.2 mV dec-1. Remarkably, the current density of Rh3Tb IMs at 100 mV overpotential is 8.6 and 5.7 times higher than that of Rh/C and commercial Pt/C, respectively. This work introduces a novel approach to the rational design of HER electrocatalysis and sheds light on the role of lanthanides in electrocatalyst systems.

6.
J Am Chem Soc ; 145(46): 25264-25273, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939166

RESUMO

Electronic structure is essential to understanding the catalytic mechanism of metal single-atom catalysts (SACs), especially under electrochemical conditions. This study delves into the nuanced modulation of "frontier orbitals" in SACs on nitrogen-doped graphene (N-C) substrates by electrochemical potentials. We observe shifts in Fermi level and changes of d-orbital occupation with alterations in electrochemical potentials, emphasizing a synergy between the discretized atomic orbitals of metals and the continuous bands of the N-C based environment. Using O2 and CO2 as model adsorbates, we highlight the direct consequences of these shifts on adsorption energies, unveiling an intriguing inversion of adsorption energies on Co/N-C SAC under negative electrochemical potentials. Such insights are attributed to the role of the dxz and dz2 orbitals, pivotal for stabilizing the π* orbitals of O2. Through this exploration, our work offers insights on the interplay between electronic structures and adsorption behaviors in SACs, paving the way for enhanced catalyst design strategies in electrochemical processes.

7.
ACS Nano ; 17(22): 23103-23114, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930125

RESUMO

Rare earth (RE) elements possess electronic configurations that can provide additional pathways for tailoring the electronic structures of active elements through alloying, making it an important area of exploration in electrocatalysis. However, the large negative redox potential between RE and Pt has hindered the development of RE nanoalloys. In this study, a solid-phase synthesis strategy was employed to synthesize ternary Pt3-xIrxSc nanoparticles (NPs). By leveraging the electronegativity difference between Pt (2.28), Ir (2.20), and Sc (1.36), a charge-balance strategy was implemented to stabilize and enhance the catalytic performance of the alloy. The electron transfer from Sc to Pt/Ir results in the latter being negatively charged, and the Ir modifies the electron density of Pt, enabling favorable adsorption of active H species during the hydrogen evolution reaction (HER). Pt2IrSc exhibits enhanced HER activity at all pH values, achieving low overpotentials at 10 mA cm-2 of only 13, 18, and 25 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively. This electrocatalyst also exhibits robust electrocatalytic stability even after 20,000 cycles. This work represents an application of the charge balance strategy to RE nanoalloys, and it is expected to inspire the design and synthesis of highly reactive RE nanoalloys.

8.
Nat Commun ; 14(1): 6851, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891176

RESUMO

Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.

9.
J Am Heart Assoc ; 12(21): e031214, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850494

RESUMO

Background The presence of intraventricular hemorrhage (IVH) was extensively investigated and was associated with poor outcome in patients with intracerebral hemorrhage (ICH). However, the effect of the speed of ventricular bleeding on outcomes is unknown. Methods and Results We prospectively included patients with ICH who had baseline computed tomography scans within 6 hours after ictus between January 2016 and October 2021. The clinical characteristics were compared between patients with and without early neurologic deterioration (END). Ultraearly IVH growth (uIVHG) was defined as baseline IVH volume by onset-to-imaging time. The association between uIVHG and outcomes was assessed by using multivariable logistic regression analysis. We established the ultraearly IVH growth (uIVH) score and compared the areas under the receiver operating characteristic curves of the existing scores for predicting END. A total of 299 patients were finally enrolled. Of those, 38 patients (12.7%) experienced END at 24 hours and 89 patients (29.8%) had poor outcomes at 90 days. After adjustment for confounding factors, uIVHG (odds ratio, 1.061 [95% CI, 1.011-1.113]; P=0.016) was independently associated with END in multivariable analysis. A prediction score was developed on the basis of the logistic model. The uIVH score was developed as a sum of individual points (0-6) based on age, hematoma volume, National Institutes of Health Stroke Scale, hematoma expansion, and uIVHG ≥2.5 mL/h. In comparison with the ICH score and modified Emergency Department ICH Scale, the uIVH score exhibited best performance in the prediction of END. Conclusions uIVHG is associated with early neurologic deterioration and poor functional outcome in patients with ICH.


Assuntos
Hemorragia Cerebral , Acidente Vascular Cerebral , Humanos , Hematoma , Tomografia Computadorizada por Raios X , Acidente Vascular Cerebral/complicações , Valor Preditivo dos Testes , Prognóstico
10.
Am J Chin Med ; 51(7): 1879-1904, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37650421

RESUMO

Ruscogenin (RUS), a major effective steroidal sapogenin derived from Ophiopogon japonicas, has been reported to alleviate myocardial ischemia (MI), but its cardioprotective mechanism is still not completely clear. In this study, we observed that RUS markedly reduced MI-induced myocardial injury, as evidenced by notable reductions in infarct size, improvement in biochemical markers, alleviation of cardiac pathology, amelioration of mitochondrial damage, and inhibition of myocardial apoptosis. Moreover, RUS notably suppressed oxygen-glucose deprivation (OGD)-triggered cell injury and apoptosis. Notably, RUS demonstrated a considerable decrease of the interaction between myosin IIA and F-actin, along with the restoration of mitochondrial fusion and fission balance. We further confirmed that the effects of RUS on MI were mediated by myosin IIA using siRNA and overexpression techniques. The inhibition of myosin IIA resulted in a significant improvement of mitochondrial fusion and fission imbalance, while simultaneously counteracting the beneficial effects of RUS. By contrast, overexpression of myosin IIA aggravated the imbalance between mitochondrial fusion and fission and partially weakened the protection of RUS. These findings suggest that myosin IIA is essential or even a key functional protein in the cardioprotection of RUS. Overall, our results have elucidated an undiscovered mechanism involving myosin IIA-dependent mitochondrial fusion and fission balance for treating MI. Furthermore, our study has uncovered a novel mechanism underlying the protective effects of RUS.


Assuntos
Isquemia Miocárdica , Miosina não Muscular Tipo IIA , Espirostanos , Humanos , Dinâmica Mitocondrial , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/genética , Espirostanos/farmacologia , Espirostanos/uso terapêutico , Apoptose/genética
11.
J Am Chem Soc ; 145(17): 9540-9547, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988585

RESUMO

Downsizing metal nanoparticles to single atoms (monoatomization of nanoparticles) has been actively pursued to maximize the metal utilization of noble-metal-based catalysts and regenerate the activity of agglomerated metal catalysts. However, precise control of monoatomization to optimize the catalytic performance remains a great challenge. Herein, we developed a laser ablation strategy to achieve the accurate regulation of Pt nanoparticles (PtNP) to Pt single atoms (Pt1) conversion on CeO2. Owing to the excellent tunability of input laser energy, the proportion of Pt1 versus total Pt on CeO2 can be precisely controlled from 0 to 100% by setting different laser powers and irradiation times. The obtained Pt1PtNP/CeO2 catalyst with approximately 19% Pt1 and 81% PtNP exhibited much-enhanced CO oxidation activity than Pt1/CeO2, PtNP/CeO2, and other Pt1PtNP/CeO2 catalysts. Density functional theory (DFT) calculations showed that PtNP was the major active center for CO oxidation, while Pt1 changed the chemical potential of lattice oxygen on CeO2, which decreased the energy barrier required for CO oxidation by lattice oxygen and resulted in an overall performance improvement. This work provides a reliable strategy to redisperse metal nanoparticles for designing catalysts with various single-atom/nanoparticle ratios from a top-down path and valuable insights into understanding the synergistic effect of nano-single-atom catalysts.

12.
J Am Chem Soc ; 144(50): 23223-23229, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36490370

RESUMO

Exploring the transformation/interconversion pathways of catalytic active metal species (single atoms, clusters, nanoparticles) on a support is crucial for the fabrication of high-efficiency catalysts, the investigation of how catalysts are deactivated, and the regeneration of spent catalysts. Sintering and redispersion represent the two main transformation modes for metal active components in heterogeneous catalysts. Herein, we established a novel solid-state atomic replacement transformation for metal catalysts, through which metal atoms exchanged between single atoms and nanoalloys to form a new set of nanoalloys and single atoms. Specifically, we found that the Ni of the PtNi nanoalloy and the Zn of the ZIF-8-derived Zn1 on nitrogen-doped carbon (Zn1-CN) experienced metal interchange to produce PtZn nanocrystals and Ni single atoms (Ni1-CN) at high temperature. The elemental migration and chemical bond evolution during the atomic replacement displayed a Ni and Zn mutual migration feature. Density functional theory calculations revealed that the atomic replacement was realized by endothermically stretching Zn from the CN support into the nanoalloy and exothermically trapping Ni with defects on the CN support. Owing to the synergistic effect of the PtZn nanocrystal and Ni1-CN, the obtained (PtZn)n/Ni1-CN multisite catalyst showed a lower energy barrier of CO2 protonation and CO desorption than that of the reference catalysts in the CO2 reduction reaction (CO2RR), resulting in a much enhanced CO2RR catalytic performance. This unique atomic replacement transformation was also applicable to other metal alloys such as PtPd.

13.
J Am Chem Soc ; 144(45): 20601-20609, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36327200

RESUMO

Sintering during heterogeneous catalytic reactions is one of the most notorious deactivation channels in catalysts of supported metal nanoparticles. It is therefore critical to understand the effect of support on the sintering behavior. Here, by using in situ aberration-corrected transmission electron microscopy and computational modeling, the atomic-scale dynamic interactions are revealed between Au nanoparticles and various supports. It is found that Au nanoparticles on ceria have a smaller contact angle and are apparently less mobile, especially at surface steps when compared with those on the amorphous silica. Analogous to hydrophilicity, we attribute the origin of mobility of small nanoparticles to metal affinity, which determines the interaction between metal and support material. Ab initio molecular dynamics (AIMD) and machine learning-based deep potential molecular dynamics (DPMD) simulations directly capture a coalescence process on the silica surface and the strong pinning of gold on ceria. The joint experimental and theoretical results on the atomic scale demonstrate the metal affinity of active and inert supports as the key descriptor pertinent to sintering and deactivation of heterogeneous catalysts.

14.
Mol Ther Nucleic Acids ; 29: 672-688, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36090756

RESUMO

Traditional Chinese medicines (TCMs) have been widely used for treating ischemic heart disease (IHD), and secondary metabolites are generally regarded as their pharmacologically active components. However, the effects of nucleic acids in TCMs remain unclear. We reported for the first time that a 22-mer double-strand RNA consisting of HC83 (a tRNA-derived fragment [tRF] from the 3' end of tRNAGln(UUG) of ginseng) and its complementary sequence significantly promoted H9c2 cell survival after hypoxia/reoxygenation (H/R) in vitro. HC83_mimic could also significantly improve cardiac function by maintaining both cytoskeleton integrity and mitochondrial function of cardiomyocytes. Further in vivo investigations revealed that HC83_mimic is more potent than metoprolol by >500-fold against myocardial ischemia/reperfusion (MI/R) injury. In-depth studies revealed that HC83 directly downregulated a lncRNA known as myocardial infarction-associated transcript (MIAT) that led to a subsequent upregulation of VEGFA expression. These findings provided the first evidence that TCM-derived tRFs can exert miRNA-like functions in mammalian systems, therefore supporting the idea that TCM-derived tRFs are promising RNA drug candidates shown to have extraordinarily potent effects. In summary, this study provides a novel strategy not only for discovering pharmacologically active tRFs from TCMs but also for efficiently exploring new therapeutic targets for various diseases.

15.
Chem Sci ; 13(29): 8518-8525, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35974750

RESUMO

Versatile graphene-like two-dimensional materials with s-, p- and d-block elements have aroused significant interest because of their extensive applications while there is a lack of such materials with f-block elements. Herein we report a unique one composed of the f-block element moiety of uranyl (UO2 2+) through a global-minimum structure search. Its geometry is found to be similar to that of graphene with a honeycomb-like hexagonal unit composed of six uranyl ligands, where each uranyl is bridged by two superoxido groups and a pair of hydroxyl ligands. All the uranium and bridging oxygen atoms form an extended planar 2D structure, which shows thermodynamic, kinetic and thermal stabilities due to σ/π bonding as well as electrostatic interactions between ligands. Each superoxido ligand has one unpaired (2pπ*)1 electron and is antiferromagnetically coupled through uranyl bridges with 2pπ*-5f δ -2pπ* superexchange interactions, forming a rare type of one-dimensional Heisenberg chain with p-orbital antiferromagnetism, which might become valuable for application in antiferromagnetic spintronics.

16.
J Am Chem Soc ; 144(8): 3535-3542, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35107999

RESUMO

Identification of catalytic active sites is pivotal in the design of highly effective heterogeneous metal catalysts, especially for structure-sensitive reactions. Downsizing the dimension of the metal species on the catalyst increases the dispersion, which is maximized when the metal exists as single atoms, namely, single-atom catalysts (SACs). SACs have been reported to be efficient for various catalytic reactions. We show here that the Pt SACs, although with the highest metal atom utilization efficiency, are totally inactive in the cyclohexane (C6H12) dehydrogenation reaction, an important reaction that could enable efficient hydrogen transportation. Instead, catalysts enriched with fully exposed few-atom Pt ensembles, with a Pt-Pt coordination number of around 2, achieve the optimal catalytic performance. The superior performance of a fully exposed few-atom ensemble catalyst is attributed to its high d-band center, multiple neighboring metal sites, and weak binding of the product.

17.
Front Mol Neurosci ; 15: 972297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776772

RESUMO

Precocious puberty (PP) is a common condition among children. According to the pathogenesis and clinical manifestations, PP can be divided into central precocious puberty (CPP, gonadotropin dependent), peripheral precocious puberty (PPP, gonadotropin independent), and incomplete precocious puberty (IPP). Identification of the variations in key metabolites involved in CPP and their underlying biological mechanisms has increased the understanding of the pathological processes of this condition. However, little is known about the role of metabolite variations in the drug treatment of CPP. Moreover, it remains unclear whether the understanding of the crucial metabolites and pathways can help predict disease progression after pharmacological therapy of CPP. In this study, systematic metabolomic analysis was used to examine three groups, namely, healthy control (group N, 30 healthy female children), CPP (group S, 31 female children with CPP), and treatment (group R, 29 female children) groups. A total of 14 pathways (the top two pathways were aminoacyl-tRNA biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis) were significantly enriched in children with CPP. In addition, two short peptides (His-Arg-Lys-Glu and Lys-Met-His) were found to play a significant role in CPP. Various metabolites associated with different pathways including amino acids, PE [19:1(9Z)0:0], tumonoic acid I, palmitic amide, and linoleic acid-biotin were investigated in the serum of children in all groups. A total of 45 metabolites were found to interact with a chemical drug [a gonadotropin-releasing hormone (GnRH) analog] and a traditional Chinese medicinal formula (DBYW). This study helps to understand metabolic variations in CPP after drug therapy, and further investigation may help develop individualized treatment approaches for CPP in clinical practice.

18.
Zookeys ; 1061: 87-108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707454

RESUMO

We provide a molecular phylogeny of Asian pit vipers (the genus Gloydius) based on four mitochondrial genes (12S, 16S, ND4, and cytb). Sequences of Gloydiushimalayanus, the only member of the genus that occurs south of the Himalayan range, are included for the first time. In addition, two new species of the genus Gloydius are described based on specimens collected from Zayu, Tibet, west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. The new species, Gloydiuslipipengi sp. nov., can be differentiated from its congeners by the combination of the following characters: the third supralabial not reaching the orbit (separated from it by a suborbital scale); wide, black-bordered greyish postorbital stripe extending from the posterior margin of the orbit (not separated by the postoculars, covering most of the anterior temporal scale) to the ventral surface of the neck; irregular black annular crossbands on the mid-body; 23-21-15 dorsal scales; 165 ventral scales, and 46 subcaudal scales. Gloydiusswild sp. nov. can be differentiated from its congeners by the narrower postorbital stripe (only half the width of the anterior temporal scale, the lower edge is approximately straight and bordered with white); a pair of arched stripes on the occiput; lateral body lakes black spots; a pair of round spots on the parietal scales; 21 rows of mid-body dorsal scales; zigzag dark brown stripes on the dorsum; 168-170 ventral scales, and 43-46 subcaudal scales. The molecular phylogeny in this study supports the sister relationship between G.lipipengi sp. nov. and G.rubromaculatus, another recently described species from the Qinghai-Tibet Plateau, more than 500 km away, and indicate the basal position of G.himalayanus within the genus and relatively distant relationship to its congeners.

19.
J Mol Graph Model ; 109: 108032, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509093

RESUMO

In this paper, we have applied Monte Carlo method to investigate the magnetic behaviors of the antiferromagnetic/ferromagnetic mixed spin-5/2 and spin-3/2 Ising bilayer system in a time-dependent magnetic field. We have analyzed the magnetization, magnetic susceptibility, internal energy and hysteresis loops of the system in detail. We have clarified how the different physical parameters affect the critical temperature and observed the triple-loop hysteresis behavior.


Assuntos
Campos Magnéticos , Magnetismo , Método de Monte Carlo , Temperatura
20.
Front Cell Dev Biol ; 9: 686848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262905

RESUMO

Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily that alleviates cardiac hypertrophy, myocardial infarction, and vascular injury by regulating oxidative stress, inflammation, and cell survival. However, the roles and underlying mechanisms of GDF11 in diabetic cardiomyopathy (DCM) remain largely unknown. In this study, we sought to determine whether GDF11 could prevent DCM. After establishing a mouse model of diabetes by administering a high-fat diet and streptozotocin, intramyocardial injection of an adeno-associated virus was used to achieve myocardium-specific GDF11 overexpression. GDF11 remarkably improved cardiac dysfunction and interstitial fibrosis by reducing the levels of reactive oxygen species and protecting against cardiomyocyte loss. Mechanistically, decreased sirtuin 1 (SIRT1) expression and activity were observed in diabetic mice, which was significantly increased after GDF11 overexpression. To further explore how SIRT1 mediates the role of GDF11, the selective inhibitor EX527 was used to block SIRT1 signaling pathway, which abolished the protective effects of GDF11 against DCM. In vitro studies confirmed that GDF11 protected against H9c2 cell injury in high glucose and palmitate by attenuating oxidative injury and apoptosis, and these effects were eliminated by SIRT1 depletion. Our results demonstrate for the first time that GDF11 protects against DCM by regulating SIRT1 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...