Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.635
Filtrar
1.
Surgery ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38890102

RESUMO

BACKGROUND: Surveillance recommendations for postoperative high-risk colorectal bone metastases patients remain in a gray area of guidelines. We aimed to develop a risk stratification system to select ideal candidates for follow-up of colorectal bone metastases status. METHODS: Postoperative colorectal cancer patients were included to develop a risk-scoring system to predict bone metastases. Risk scores were calculated based on the predictive factors for bone metastases, which were identified using the Cox proportional hazard regression model. Kaplan-Meier curves visualize the differences between risk groups. RESULTS: Eight risk factors (age, lymph node metastasis, pathologic tumor deposit, KRAS mutation status, suspicious retroperitoneal lymph node metastasis, lung metastasis status, largest thickness of colorectal cancer lesion, largest short diameter of lymph node) were predictors of colorectal bone metastases and incorporated into the risk scoring system, and the patients were categorized into 2 risk groups. In the low-risk group, the 1, 3, and 5-year colorectal bone metastases rates were 2.4%, 4.6%, and 3.7%, respectively, whereas in the high-risk group, the 1, 3, and 5-year colorectal bone metastases rates were 15.6%, 29.9%, and 44.4%, respectively. The risk scoring system exhibited a C-index of 0.706, 0.795, and 0.841 in 1, 3, and 5 years, respectively. The Kaplan-Meier curve demonstrates that the incidence of colorectal bone metastases was higher in the high-risk group than in the low-risk group (50.5% vs 11.4%, P < .001). CONCLUSION: This risk-scoring system may be valuable in predicting colorectal bone metastases in colorectal cancer patients, and we suggest that colorectal bone metastases status surveillance be added in the high-risk group.

2.
Food Chem ; 456: 139946, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38852450

RESUMO

To effectively monitor multi-residues of penicillin antibiotics (PENs) in milk, we developed a novel ratiometric electrochemical aptasensor enabling simultaneous detection of PENs. The aptasensor employed a broad-spectrum aptamer as a recognition element, niobium carbide functionalized with methylene blue (Nb2C-MB) as a reference signal generator, and a ferrocene-labeled aptamer (Fc-Apt) as an output signal. Electrodes were modified with Fe-N-C doped carbon nanotubes (Fe-N-C-CNTs) to amplify detection signals further. During detection, Fc-Apt binding to PENs decreased Fc current intensity (IFc) and increased MB current intensity (IMB). The simultaneous detection of PENs was achieved using IMB/IFc as a quantitative signal. Under optimal conditions, a good linear relationship between IMB/IFc and antibiotic concentration was observed, indicating the aptasensor had a robustness. The limits of detection of aptasensor for four penicillin antibiotics and their mixed targets were 0.093-0.191 nM. This work provides a new approach to multi-residue detection of the same class of antibiotics.

3.
Br J Pharmacol ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853468

RESUMO

BACKGROUND AND PURPOSE: Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH: The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS: The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS: Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.

4.
Talanta ; 277: 126320, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824861

RESUMO

Nanozymes have the advantages of simple synthesis, high stability, low cost and easy recycling, and can be applied in many fields including molecular detection, disease diagnosis and cancer therapy. However, most of the current nanozymes suffer from the defects of low catalytic activity and single function, which limits their sensing sensitivity and multifunctional applications. The development of highly active and multifunctional nanozymes is an important way to realize multidisciplinary applications. In this work, Mn-based Prussian blue analogues (Mn-PBA) and their derived double-shelled nanoboxes (DSNBs) are synthesized by co-precipitation method. The nanobox structure of DSNBs formed by etching Mn-PBA with tannic acid endows Mn-PBA DSNBs with better peroxidase-like activity than Mn-PBA. A colorimetric method for the rapid and sensitive determination of H2O2 is developed using Mn-PBA DSNBs-1.5 as a sensor with a detection limit as low as 0.62 µM. Moreover, Mn-PBA DSNBs-2 has excellent photothermal conversion ability, which can be applied to the photothermal therapy of tumors to inhibit the proliferation of tumor cells without damaging other tissues and organs. This study provides a new idea for the rational design of nanozymes and the expansion of their multi-functional applications in various fields.

5.
Anal Chim Acta ; 1312: 342749, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834263

RESUMO

Carbon monoxide (CO) is an innate signaling molecule that can regulate immune responses and interact with crucial elements of the circadian clock. Moreover, pharmacologically, CO has been substantiated for its therapeutic advantages in animal models of diverse pathological conditions. Given that an excessive level of CO can be toxic, it is imperative to quantify the necessary amount for therapeutic use accurately. However, estimating gaseous CO is notably challenging. Therefore, novel techniques are essential to quantify CO in therapeutic applications and overcome this obstacle precisely. The classical Myoglobin (Mb) assay technique has been extensively used to determine the amount of CO-release from CO-releasing molecules (CORMs) within therapeutic contexts. Nevertheless, specific challenges arise when applying the Mb assay to evaluate CORMs featuring innovative molecular architectures. Here, we report a fluorinated photo-CORM (CORM-FBS) for the photo-induced CO-release. We employed the 19F NMR spectroscopy approach to monitor the release of CO as well as quantitative evaluation of CO release. This new 19F NMR approach opens immense opportunities for researchers to develop reliable techniques for identifying molecular structures, quantitative studies of drug metabolism, and monitoring the reaction process.


Assuntos
Monóxido de Carbono , Luz , Mioglobina , Monóxido de Carbono/análise , Mioglobina/química , Espectroscopia de Ressonância Magnética/métodos , Flúor/química , Animais , Processos Fotoquímicos
6.
Acta Biomater ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879104

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive phase of metabolic dysfunction-associated steatotic liver disease (MASLD) that develops into irreversible liver cirrhosis and hepatocellular carcinoma, ultimately necessitating liver transplantation as the sole life-saving option. However, given the drawbacks of liver transplantation, including invasiveness, chronic immunosuppression, and a lack of donor livers, prompt diagnosis and effective treatment are indispensable. Due to the limitations of liver biopsy and conventional imaging modalities in diagnosing MASH, as well as the potential hazards associated with liver-protecting medicines, numerous nanoformulations have been created for MASH theranostics. Particularly, there has been significant study interest in artificial nanoparticles, natural biomaterials, and bionic nanoparticles that exhibit exceptional biocompatibility and bioavailability. In this review, we summarized extracellular vesicles (EVs)-based omics analysis and Fe3O4-based functional magnetic nanoparticles as magnetic resonance imaging (MRI) contrast agents for MASH diagnosis. Additionally, artificial nanoparticles such as organic and inorganic nanoparticles, as well as natural biomaterials such as cells and cell-derived EVs and bionic nanoparticles including cell membrane-coated nanoparticles, have also been reported for MASH treatment owing to their specific targeting and superior therapeutic effect. This review has the potential to stimulate advancements in nanoformulation fabrication techniques. By exploring their compatibility with cell biology, it could lead to the creation of innovative material systems for efficient theragnostic uses for MASH. STATEMENT OF SIGNIFICANCE: People with metabolic dysfunction-associated steatohepatitis (MASH) will progress to fibrosis, cirrhosis, or even liver cancer. It is imperative to establish effective theragnostic techniques to stop MASH from progressing into a lethal condition. In our review, we summarize the advancement of artificial, natural, and bionic nanoparticles applied in MASH theragnosis. Furthermore, the issues that need to be resolved for these cutting-edge techniques are summarized to realize a more significant clinical impact. We forecast the key fields that will advance further as nanotechnology and MASH research progress. Generally, our discovery has significant implications for the advancement of nanoformulation fabrication techniques, and their potential to be compatible with cell biology could lead to the creation of innovative materials systems for effective MASH theragnostic.

7.
PLoS One ; 19(6): e0303397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848334

RESUMO

A novel powered ankle-foot prosthesis is designed. The effect of wearing the novel prosthesis and an energy-storage-and-return (ESAR) foot on lower-limb biomechanics is investigated to preliminarily evaluate the design. With necessary auxiliary materials, a non-amputated subject (a rookie at using prostheses) is recruited to walk on level ground with an ESAR and the novel powered prostheses separately. The results of the stride characteristics, the ground reaction force (GRF) components, kinematics, and kinetics in the sagittal plane are compared. Wearing the powered prosthesis has less prolongation of the gait cycle on the unaffected side than wearing the ESAR foot. Wearing ESAR or proposed powered prostheses influences the GRF, kinematics, and kinetics on the affected and unaffected sides to some extent. Thereinto, the knee moment on the affected side is influenced most. Regarding normal walking as the reference, among the total of 15 indexes, the influences of wearing the proposed powered prosthesis on six indexes on the affected side (ankle's/knee's/hip's angles, hip's moment, and Z- and X-axis GRF components) and five indexes on the unaffected side (ankle's/knee's/hip's angles and ankle's/hip's moments) are slighter than those of wearing the ESAR foot. The influences of wearing the powered prosthesis on two indexes on the unaffected side (knee's moment and X-axis GRF component) are similar to those of wearing the ESAR foot. The greatest improvement of wearing the powered prosthesis is to provide further plantarflexion after reaching the origin of the ankle joint before toe-off, which means that the designed powered device can provide further propulsive power for the lifting of the human body's centre of gravity during walking on level ground. The results demonstrate that wearing the novel powered ankle-foot prosthesis benefits the rookie in recovering the normal gait more than wearing the ESAR foot.


Assuntos
Membros Artificiais , , Desenho de Prótese , Humanos , Fenômenos Biomecânicos , Pé/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Masculino , Tornozelo/fisiologia , Articulação do Tornozelo/fisiologia , Adulto , Extremidade Inferior/fisiologia
8.
ACS Omega ; 9(23): 24513-24519, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882152

RESUMO

Antibiotic resistance is one of the biggest challenges that causes incurable diseases and endangers public health. Metal-porphyrin-modified nanoarchitectonics can enhance the bacterial affinity and destruction of cell walls. Herein, a new photoresponsive nanoarchitectonics (BPGa@COF-Cu) was synthesized by doping Ga(III) on the surface of black phosphorus (BP) and subsequently loaded into a Cu(II)-based covalent-organic framework (COF-Cu). The COF-Cu was induced by the coupling reaction of terephthalic chloride with amino-substituted porphyrin derivatives (THPP), followed by the coordination of the Cu(II) ion. The material BPGa@COF-Cu is a nanoball, and the mean radius is ca. 250 nm. The photochemical properties of BPGa@COF-Cu show that it efficiently catalyzes H2O2 into ·OH. BPGa@COF-Cu can also produce both singlet oxygen and heat upon 808 nm irradiation. Further, BPGa@COF-Cu was employed to inhibit bacteria, and the results showed that it can destroy the membrane of bacteria. The MIC (minimal inhibition concentration) of BPGa@COF-Cu against E. coli was 1 µg/mL. All the data suggest that BPGa@COF-Cu is a multiple nanoarchitectonics for bacterial treatment.

9.
Food Chem ; 454: 139645, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38833823

RESUMO

Herein, we investigated the potential of REIMS analysis for classifying muscle composition and meat sensory quality. The study utilized 116 samples from 29 crossbred Angus × Salers, across three muscle types. Prediction models were developed combining REIMS fingerprints and meat quality metrics. Varying efficacy was observed across REIMS discriminations - muscle type (71 %), marbling level (32 %), untrained consumer evaluated tenderness (36 %), flavor liking (99 %) and juiciness (99 %). Notably, REIMS demonstrated the ability to classify 116 beef across four Meat Standards Australia grades with an overall accuracy of 37 %. Specifically, "premium" beef could be differentiated from "unsatisfactory", "good everyday" and "better than everyday" grades with accuracies of 99 %, 84 %, and 62 %, respectively. Limited efficacy was observed however, in classifying trained panel evaluated sensory quality and fatty acid composition. Additionally, key predictive features were tentatively identified from the REIMS fingerprints primarily comprised of molecular ions present in lipids, phospholipids, and amino acids.


Assuntos
Paladar , Bovinos , Animais , Humanos , Espectrometria de Massas , Austrália , Ácidos Graxos/análise , Ácidos Graxos/química , Músculo Esquelético/química , Carne/análise , Aminoácidos/análise , Aminoácidos/química
10.
Biomed Pharmacother ; 176: 116819, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834003

RESUMO

BACKGROUND AND PURPOSE: Our previous research discovered that cinnamamide derivatives are a new type of potential cardioprotective agents myocardial ischemia-reperfusion (MIR) injury, among which Compound 10 exhibits wonderful beneficial action in vitro. However, the exact mechanism of Compound 10 still needs to be elucidated. EXPERIMENTAL APPROACH: The protective effect of Compound 10 was determined by detecting the cell viability and LDH leakage rate in H9c2 cells subjected to H2O2. Alterations of electrocardiogram, echocardiography, cardiac infarct area, histopathology and serum myocardial zymogram were tested in MIR rats. Additionally, the potential mechanism of Compound 10 was explored through PCR. Network pharmacology and Western blotting was conducted to monitor levels of proteins related to autophagic flux and mTOR, autophagy regulatory substrate, induced by Compound 10 both in vitro and in vivo, as well as expressions of Sirtuins family members. KEY RESULTS: Compound 10 significantly ameliorated myocardial injury, as demonstrated by increased cell viability, decreased LDH leakage in vitro, and declined serum myocardial zymogram, ST elevation, cardiac infarct area and improved cardiac function and microstructure of heart tissue in vivo. Importantly, Compound 10 markedly enhanced the obstruction of autophagic flux and inhibited excessive autophagy initiation against MIR by decreased ATG5, Rab7 and increased P-mTOR and LAMP2. Furthermore, Sirt1 knockdown hindered Compound 10's regulation on mTOR, leading to interrupted cardiac autophagic flux. CONCLUSIONS AND IMPLICATIONS: Compound 10 exerted cardioprotective effects on MIR by reducing excessive autophagy and improving autophgic flux blockage. Our work would take a novel insight in seeking effective prevention and treatment strategies against MIR injury.


Assuntos
Autofagia , Cardiotônicos , Traumatismo por Reperfusão Miocárdica , Ratos Sprague-Dawley , Sirtuína 1 , Animais , Autofagia/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Sirtuína 1/metabolismo , Ratos , Cardiotônicos/farmacologia , Masculino , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Cinamatos/farmacologia
11.
Medicine (Baltimore) ; 103(24): e38561, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875409

RESUMO

Several studies have reported a potential association between the gut microbiota (GM) and scoliosis. However, the causal relationship between GM and scoliosis and the role of inflammatory factors (IFs) as mediators remain unclear. This study aimed to analyze the relationship between GM, IFs, and scoliosis. We investigated whether IFs act as mediators in pathways from the GM to scoliosis. Additionally, using reverse Mendelian randomization (MR) analysis, we further investigated the potential impact of genetic predisposition to scoliosis on the GM and IFs. In this study, we searched for publicly available genome-wide association study aggregate data and utilized the MR method to establish bidirectional causal relationships among 211 GM taxa, 91 IFs, and scoliosis. To ensure the reliability of our research findings, we employed 5 MR methods, with the inverse variance weighting approach serving as the primary statistical method, and assessed the robustness of the results through various sensitivity analyses. Additionally, we investigated whether IFs mediate pathways from GM to scoliosis. Three negative causal correlations were observed between the genetic predisposition to GM and scoliosis. Additionally, both positive and negative correlations were found between IFs and scoliosis, with 3 positive and 3 negative correlations observed. IFs do not appear to act as mediators in the pathway from GM to scoliosis. In conclusion, this study demonstrated a causal association between the GM, IFs, and scoliosis, indicating that IFs are not mediators in the pathway from the GM to scoliosis. These findings offer new insights into prevention and treatment strategies for scoliosis.


Assuntos
Microbioma Gastrointestinal , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Escoliose , Escoliose/genética , Humanos , Microbioma Gastrointestinal/genética , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/sangue
12.
J Am Chem Soc ; 146(22): 15000-15009, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787801

RESUMO

We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 µs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.

13.
Biomed Pharmacother ; 175: 116698, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713946

RESUMO

Neurotoxicity can cause a range of symptoms and disorders in humans, including neurodegenerative diseases, neurodevelopmental disorders, nerve conduction abnormalities, neuroinflammation, autoimmune disorders, and cognitive deficits. The cyclic guanosine-adenosine synthase (cGAS)-stimulator of interferon genes (STING) pathway and NF-κB pathway are two important signaling pathways involved in the innate immune response. The cGAS-STING pathway is activated by the recognition of intracellular DNA, which triggers the production of type I interferons and pro-inflammatory cytokines, such as tumor necrosis factor, IL-1ß, and IL-6. These cytokines play a role in oxidative stress and mitochondrial dysfunction in neurons. The NF-κB pathway is activated by various stimuli, such as bacterial lipopolysaccharide, viral particle components, and neurotoxins. NF-κB activation may lead to the production of pro-inflammatory cytokines, which promote neuroinflammation and cause neuronal damage. A potential interaction exists between the cGAS-STING and NF-κB pathways, and NF-κB activation blocks STING degradation by inhibiting microtubule-mediated STING transport. This review examines the progress of research on the roles of these pathways in neurotoxicity and their interrelationships. Understanding the mechanisms of these pathways will provide valuable therapeutic insights for preventing and controlling neurotoxicity.


Assuntos
Proteínas de Membrana , NF-kappa B , Nucleotidiltransferases , Transdução de Sinais , Humanos , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia
14.
Chem Biol Interact ; 396: 111044, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729284

RESUMO

Mastitis is an inflammatory disease of the mammary gland with a high incidence in lactating animals, significantly impacting their health and breastfeeding. Moreover, mastitis adversely affects milk quality and yield, resulting in substantial economic losses for the dairy farming industry. Forsythiaside A (FTA), a phenylethanol glycoside analog extracted from Forsythia, exhibits notable anti-inflammatory and antioxidant properties. However, its protective effects and specific mechanisms against mastitis remain unclear. In this study, a lipopolysaccharide (LPS)-induced mouse mastitis model was used to investigate the protective effect of FTA on LPS-induced mastitis and its potential mechanism using histological assays, Western blot, qRT-PCR, FITC-albumin permeability test, 16s rRNA gene sequencing analysis and non-targeted metabolomics assays to investigate the protective effect of FTA on LPS-induced mastitis model and its potential mechanism. The results demonstrated that FTA significantly mitigated LPS-induced mouse mastitis by reducing inflammation and apoptosis levels, modulating the PI3K/AKT/mTOR signaling pathways, inducing autophagy, and enhancing antioxidant capacity and the expression of tight junction proteins. Furthermore, FTA increased the abundance of beneficial microbiota while decreasing the levels of harmful microbiota in mice, thus counteracting the gut microbiota disruption induced by LPS stimulation. Intestinal metabolomics analysis revealed that FTA primarily regulated LPS-induced metabolite alterations through key metabolic pathways, such as tryptophan metabolism. This study confirms the anti-inflammatory and antioxidant effects of FTA on mouse mastitis, which are associated with key metabolic pathways, including the restoration of gut microbiota balance and the regulation of tryptophan metabolism. These findings provide a novel foundation for the treatment and prevention of mammalian mastitis using FTA.


Assuntos
Autofagia , Microbioma Gastrointestinal , Glicosídeos , Lipopolissacarídeos , Mastite , Animais , Feminino , Autofagia/efeitos dos fármacos , Camundongos , Mastite/induzido quimicamente , Mastite/metabolismo , Mastite/tratamento farmacológico , Mastite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Glicosídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C
15.
Biomed Pharmacother ; 175: 116716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735084

RESUMO

Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.


Assuntos
Biofilmes , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Taninos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Taninos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Transativadores
16.
Sci Total Environ ; 934: 173156, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763197

RESUMO

Understanding the disparities in carbon emission trend among cities is critical for achieving carbon peak goal. However, the status and trends of carbon peaking and reduction in various city types are still unclear. Therefore, this study classified 315 Chinese cities according to their economic and industrial structure by SOM-K-means, aiming to evaluate the trends and dynamic drivers of carbon peaking progress in different city types. The findings reveal a decline in carbon emissions in 110 cities (34.9 %) since 2020. Notably, all city types show potential for carbon reduction and achieving carbon peaking. Specifically, resource-based cities and high-end service cities have the most effect on reducing emissions, with 48.4 % and 42.1 % of the cities declining in carbon emissions. Energy-based and heavy industrial cities face heightened pressure to reduce carbon emissions. Additionally, in high-end service cities, energy efficiency and investment intensity contribute to emission reduction, while industrial structure adjustment decrease carbon emissions in resource-based cities. Furthermore, enhancing energy efficiency effects and R&D intensity are effective ways to significantly reduce carbon emissions in heavy industrial cities. We conclude that differentiating carbon reduction pathways for different cities should constitute be a breakthrough in achieving the goal of carbon peaking. These insights provide recommendations for cities that have yet to reach their carbon peak for both China and other developing countries.

17.
Biosens Bioelectron ; 259: 116422, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797034

RESUMO

The biology-material hybrid method for chemical-electricity conversion via microbial fuel cells (MFCs) has garnered significant attention in addressing global energy and environmental challenges. However, the efficiency of these systems remains unsatisfactory due to the complex manufacturing process and limited biocompatibility. To overcome these challenges, here, we developed a simple bio-inorganic hybrid system for bioelectricity generation in Shewanella oneidensis (S. oneidensis) MR-1. A biocompatible surface display approach was designed, and silver-binding peptide AgBP2 was expressed on the cell surface. Notably, the engineered Shewanella showed a higher electrochemical sensitivity to Ag+, and a 60 % increase in power density was achieved even at a low concentration of 10 µM Ag+. Further analysis revealed significant upregulations of cell surface negative charge intensity, ATP metabolism, and reducing equivalent (NADH/NAD+) ratio in the engineered S. oneidensis-Ag nanoparticles biohybrid. This work not only provides a novel insight for electrochemical biosensors to detect metal ions, but also offers an alternative biocompatible surface display approach by combining compatible biomaterials with electricity-converting bacteria for advancements in biohybrid MFCs.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Shewanella , Prata , Shewanella/metabolismo , Shewanella/química , Fontes de Energia Bioelétrica/microbiologia , Técnicas Biossensoriais/métodos , Prata/química , Materiais Biocompatíveis/química , Nanopartículas Metálicas/química , Eletricidade , Técnicas Eletroquímicas/métodos
18.
Talanta ; 275: 126180, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703480

RESUMO

Organic Electrochemical Transistors (OECTs) are integral in detecting human bioelectric signals, attributing their significance to distinct electrochemical properties, the utilization of soft materials, compact dimensions, and pronounced biocompatibility. This review traverses the technological evolution of OECT, highlighting its profound impact on non-invasive detection methodologies within the biomedicalfield. Four sensor types rooted in OECT technology were introduced: Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyography (EMG), and Electrooculography (EOG), which hold promise for integration into wearable detection systems. The fundamental detection principles, material compositions, and functional attributes of these sensors are examined. Additionally, the performance metrics and delineates viable optimization strategies for assorted physiological electrical detection sensors are discussed. The overarching goal of this review is to foster deeper insights into the generation, propagation, and modulation of electrophysiological signals, thereby advancing the application and development of OECT in medical sciences.


Assuntos
Transistores Eletrônicos , Humanos , Eletromiografia/métodos , Eletrocardiografia/métodos , Técnicas Eletroquímicas/métodos , Eletroculografia/métodos , Eletroencefalografia
19.
Org Lett ; 26(23): 4910-4915, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38818971

RESUMO

A silver-catalyzed aminative dearomatization of naphthols has been developed and integrated into a stepwise approach for subsequent skeletal diversifications including ring expansion, ring opening, ring contraction, and atom transmutation of aryl scaffolds. This approach enables the synthesis of a diverse array of azepinones, unsaturated amides, isoquinolines, and indenones from naphthol substrates. Its application in the synthesis of bioactive and functional molecules as well as the conversion of complex molecular skeletons underscores its broad potential applicability. Mechanistic investigations suggest the intermediacy of the dearomatized intermediates.

20.
Food Chem ; 453: 139625, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38754349

RESUMO

Simultaneous inoculation of non-Saccharomyces cerevisiae during the alcoholic fermentation process has been found to be an effective strategy for enhancing wine flavor. This study aimed to investigate the effect of Torulaspora delbrueckii NCUF305.2 on the flavor of navel orange original brandy (NOOB) using E-nose combined with HS-SPME-GC-MS. The results showed a significant increase (p < 0.05) in the sensitivity of NOOB to W5C, W3C, W1S, and W3S sensors by mixed fermentation (MF). Esters in NOOB increased by 4.13%, while higher alcohols increased by 21.93% (p < 0.001), terpenes and others increased by 52.07% and 40.99% (p < 0.01), respectively. Notably, several important volatile compounds with relative odor activity values above 10 showed an increase. Sensory analysis revealed that a more pronounced citrus-like flavor and higher overall appearance scores were found in MF than in pure fermentation (PF). These findings offer valuable theoretical guidance for enhancing the quality of fruit brandies.


Assuntos
Citrus sinensis , Nariz Eletrônico , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Paladar , Torulaspora , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Citrus sinensis/química , Odorantes/análise , Torulaspora/metabolismo , Torulaspora/química , Aromatizantes/química , Vinho/análise , Frutas/química , Frutas/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...