Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(47): eabi4567, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797709

RESUMO

Advancements in nanotechnology require the development of nanofabrication methods for a wide range of materials, length scales, and elemental distributions. Today's nanofabrication methods are typically missing at least one demanded characteristic. Hence, a general method enabling versatile nanofabrication remains elusive. Here, we show that, when revealing and using the underlying mechanisms of thermomechanical nanomolding, a highly versatile nanofabrication toolbox is the result. Specifically, we reveal interface diffusion and dislocation slip as the controlling mechanisms and use their transition to control, combine, and predict the ability to fabricate general materials, material combinations, and length scales. Designing specific elemental distributions is based on the relative diffusivities, the transition temperature, and the distribution of the materials in the feedstock. The mechanistic origins of thermomechanical nanomolding and their homologous temperature-dependent transition suggest a versatile toolbox capable of combining many materials in nanostructures and potentially producing any material in moldable shapes on the nanoscale.

2.
Sci Rep ; 11(1): 3903, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594154

RESUMO

Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al-Ni-Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s.

3.
ACS Appl Mater Interfaces ; 12(47): 52908-52914, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191728

RESUMO

With its ease of implementation, low cost, high throughput, and excellent feature replication accuracy, nanoimprinting is used to fabricate structures for electrical, optical, and biological applications or to modify surface properties. If ultraprecise and/or subnanometer-sized patterns are desired, nanoimprinting has shown only limited success with polymers, silica glasses, or crystalline materials. In contrast, the absence of an intrinsic length scale that would interfere with imprinting resolution enables bulk metallic glasses (BMGs) to replicate structures down to the atomic scale through thermoplastic forming (TPF). However, only a small number of BMG-forming alloys can be used for TPF-based atomic-scale imprinting. Here, we demonstrate an alternative sputter deposition-based approach for the replication of atomic-scale features that is suited for a very broad range of amorphous alloys, thereby dramatically extending the available chemistries. Additional advantages are the method's scalability, its ability to replicate a wide range of molds, its low material consumption, and the fact that the films can readily be applied onto almost any workpiece, which together open up new avenues to atomically defined surface structuring and functionalization. Our method constitutes the advancement from proof of concept to a practical and highly versatile toolbox of atomic-scale imprinting to be explored for the science and technology of atomic-scale imprinting.

4.
ACS Comb Sci ; 21(10): 666-674, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31525903

RESUMO

Corrosion trends in the bulk metallic glass forming alloy system Zr-Cu-Al are studied through a fast screening visual characterization method of thin film alloy libraries prepared by magnetron co-sputtering. Significant distinct brightness changes are present within the Zr-Cu-Al system when the thin film library is immersed in 3.5 wt % NaCl. Through additional quantification of corrosion current density, a correlation between change in brightness and corrosion current density is revealed, suggesting an effective rapid screening of corrosion simply by a visual method. For materials discovery with optimized multiproperties, we utilize the corrosion fast screening results and superimpose them on the composition dependence of the glass forming ability. This allows us to rapidly identify alloys with the best combination of glass forming ability and corrosion resistance, which we then confirm in bulk form.


Assuntos
Ligas/química , Alumínio/química , Técnicas de Química Combinatória , Cobre/química , Zircônio/química , Vidro/química
5.
Sci Rep ; 8(1): 17898, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538256

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 7(1): 7155, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769093

RESUMO

The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (R C). Despite its key role in MG research, experimental challenges have limited measured R C to a minute fraction of known glass formers. We present a combinatorial approach to directly measure R C for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct R C measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au56Cu27Si17 as the alloy with the highest GFA. In general, this method enables measurements of R C over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation.

7.
Chem Commun (Camb) ; 53(59): 8288-8291, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28665424

RESUMO

In order to bypass the limitation of bulk metallic glasses fabrication, we synthesized thin film metallic glasses to study the corrosion characteristics of a wide atomic% composition range, Mg(35.9-63%)Ca(4.1-21%)Zn(17.9-58.3%), in simulated body fluid. We highlight a clear relationship between Zn content and corrosion current such that Zn-medium metallic glasses exhibit minimum corrosion. In addition, we found higher Zn content leads to a poor in vitro cell viability. These results showcase the benefit of evaluating a larger alloy compositional space to probe the limits of corrosion resistance and prescreen for biocompatible applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Cálcio/química , Magnésio/química , Zinco/química , Ligas/farmacologia , Materiais Biocompatíveis/farmacologia , Cálcio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Vidro/química , Humanos , Magnésio/farmacologia , Microscopia de Fluorescência , Tamanho da Partícula , Propriedades de Superfície , Água/química , Zinco/farmacologia
8.
ACS Comb Sci ; 18(10): 630-637, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27557440

RESUMO

The exploration of new alloys with desirable properties has been a long-standing challenge in materials science because of the complex relationship between composition and microstructure. In this Research Article, we demonstrate a combinatorial strategy for the exploration of composition dependence of microstructure. This strategy is comprised of alloy library synthesis followed by high-throughput microstructure characterization. As an example, we synthesized a ternary Au-Cu-Si composition library containing over 1000 individual alloys using combinatorial sputtering. We subsequently melted and resolidified the entire library at controlled cooling rates. We used scanning optical microscopy and X-ray diffraction mapping to explore trends in phase formation and microstructural length scale with composition across the library. The integration of combinatorial synthesis with parallelizable analysis methods provides a efficient method for examining vast compositional ranges. The availability of microstructures from this vast composition space not only facilitates design of new alloys by controlling effects of composition on phase selection, phase sequence, length scale, and overall morphology, but also will be instrumental in understanding the complex process of microstructure formation in alloys.


Assuntos
Ligas/química , Técnicas de Química Combinatória/métodos , Cobre/química , Ouro/química , Silício/química , Ensaios de Triagem em Larga Escala , Teste de Materiais , Fenômenos Físicos
9.
Sci Rep ; 6: 26950, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230692

RESUMO

Metallic alloys are normally composed of multiple constituent elements in order to achieve integration of a plurality of properties required in technological applications. However, conventional alloy development paradigm, by sequential trial-and-error approach, requires completely unrelated strategies to optimize compositions out of a vast phase space, making alloy development time consuming and labor intensive. Here, we challenge the conventional paradigm by proposing a combinatorial strategy that enables parallel screening of a multitude of alloys. Utilizing a typical metallic glass forming alloy system Zr-Cu-Al-Ag as an example, we demonstrate how glass formation and antibacterial activity, two unrelated properties, can be simultaneously characterized and the optimal composition can be efficiently identified. We found that in the Zr-Cu-Al-Ag alloy system fully glassy phase can be obtained in a wide compositional range by co-sputtering, and antibacterial activity is strongly dependent on alloy compositions. Our results indicate that antibacterial activity is sensitive to Cu and Ag while essentially remains unchanged within a wide range of Zr and Al. The proposed strategy not only facilitates development of high-performing alloys, but also provides a tool to unveil the composition dependence of properties in a highly parallel fashion, which helps the development of new materials by design.


Assuntos
Ligas/química , Alumínio/química , Antibacterianos/química , Técnicas de Química Combinatória , Prata/química , Ligas/farmacologia , Antibacterianos/farmacologia , Cobre/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Vidro/química , Microscopia de Força Atômica , Relação Estrutura-Atividade , Zircônio/química
10.
Nat Commun ; 6: 7043, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25901951

RESUMO

Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top-down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...