Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 321: 103029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866120

RESUMO

Given the indispensability and immense value of rare earth elements for scientific and technological advancements in the 21st century, extracting high-quality rare earth resources from nature has become a global priority. Bastnäsite-(Ce) is one of the known rare earth minerals with high rare earth content and wide distribution, which occupies a pivotal position in human life and high-end production activities, making its efficient development and utilization crucial. In recent years, research on separating bastnäsite-(Ce) from gangue minerals has focused on the flotation process, with flotation reagents playing a critical role in achieving effective separation. This paper provides a detailed summary of current research on the behavior of bastnäsite-(Ce) flotation agents on minerals, their interaction with mineral surfaces during flotation separation, and outlines future prospects for further research.

2.
J Hazard Mater ; 371: 592-602, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878910

RESUMO

Toxic metal pollutants threaten water environment. It exists undesirably metal-ion concentration limits with conventional precipitation flotation. An enhanced precipitation flotation system focusing on efficient removal for bivalent metal-ions was researched. The system involved the addition of humics and Fe3+ to generate and regulate the precipitates. The characteristics of precipitates were investigated by particle analysis, conditional stability constants and DLVO theory calculations, and SEM&TEM imaging. The results reveal that metal-ions chelate with humics at low metal-ion concentration, with generating the limited micro-size precipitates of <2.0 µm, fractal dimension of 1.60-1.80 and precipitate efficiency of <91.00%. By adding trivalent Fe3+, the macro-size precipitates are obtained with particle size of approximate 10.0 µm, fractal dimension of 1.50-1.60, and nearly-total flotation removal of precipitate. The chelating interaction of Fe3+ with humics is the mainly regulating mechanism, which could enhance the conditional stability constants and the precipitate efficiency of metal-ions at low concentration. The desired precipitate particles are finally obtained by breaking the limitations of metal-ion concentration. Finally, the flotation removal of metal-ions from single or mixed solutions is respectively 99.10 ± 0.10% for Cu2+, 99.60 ± 0.10% for Pb2+, and 94.30 ± 0.30% for Zn2+. Therefore, the enhanced precipitation flotation process is an efficient purification approach for metal-containing wastewaters.

3.
Adv Colloid Interface Sci ; 246: 105-132, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28619381

RESUMO

Bubble-particle interaction is of great theoretical and practical importance in flotation. Significant progress has been achieved over the past years and the process of bubble-particle collision is reasonably well understood. This, however, is not the case for bubble-particle attachment leading to three-phase contact line formation due to the difficulty in both theoretical analysis and experimental verification. For attachment, surface forces play a major role. They control the thinning and rupture of the liquid film between the bubble and the particle. The coupling between force, bubble deformation and film drainage is critical to understand the underlying mechanism responsible for bubble-particle attachment. In this review we first discuss the advances in macroscopic experimental methods for characterizing bubble-particle attachment such as induction timer and high speed visualization. Then we focus on advances in measuring the force and drainage of thin liquid films between an air bubble and a solid surface at a nanometer scale. Advances, limits, challenges, and future research opportunities are discussed. By combining atomic force microscopy and reflection interference contrast microscopy, the force, bubble deformation, and liquid film drainage can be measured simultaneously. The simultaneous measurement of the interaction force and the spatiotemporal evolution of the confined liquid film hold great promise to shed new light on flotation.

4.
J Hazard Mater ; 307: 318-27, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26799223

RESUMO

The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation.

5.
J Hazard Mater ; 301: 46-55, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26342150

RESUMO

Humics flocculant was applied in the disposal of Bayer red mud based on selective flocculation desliming process. The parameters affecting selective flocculation behavior such as flocculant dosage, slurry pH and agitation intensity were studied. For flocculating mechanism analysis, the iron mineral and the flocs product were characterized by ζ-potential testing, settling experiments, optical microscope and SEM imaging. The results show that humics exhibits a good selective flocculation performance in the high alkaline pH range. With an optimal condition of 2% solid density, flocculant dosage 30 mg L(-1), Na2SiO3 dosage 200 mg L(-1), slurry pH 10.0 and agitation speed 1000 rpm, the recovery of iron minerals of 86.25±1.31%, the iron grade of concentrate of 61.12±0.10%, the separation index of 0.69±0.02 can be obtained in the selective flocculation. It is found that the adsorption bridging of humics polymer dominates the selectively flocculating the iron minerals. Large flocs or aggregates with a better settling capacity are generated because of humics occurring. The maximum settling velocity of 38.23±1.51 m h(-1) is reached at pH 10. This work brings the easiness in directly recovering fine particle size of iron-bearing minerals from red mud.

6.
Environ Technol ; 37(7): 785-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26293176

RESUMO

The present work has been carried out to investigate the effect of process variables on gas holdup and develop an empirical equation and a neural network model for online process control of the gas holdup based on the operating variables. In this study, the effect of process variables (nozzle diameter, circulation pressure, aeration rate, and frother dosage) on gas holdup in a cyclone-static micro-bubble flotation column of an air/oily wastewater system was investigated. Gas holdup was estimated using a pressure difference method and an empirical equation was proposed to predict gas holdup. A general regression neural network (GRNN) model was also introduced to predict gas holdup for the cyclone-static micro-bubble flotation column. The predictions from the empirical equation and the GRNN are in good agreement with the experiment data for gas holdup, while the GRNN provides higher accuracy and stability compared with that of the empirical equation.


Assuntos
Gases/química , Microbolhas , Modelos Teóricos , Purificação da Água/instrumentação , Ar , Redes Neurais de Computação , Óleos/química , Óleos/isolamento & purificação , Pressão , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...