Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2404566, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963158

RESUMO

Optoelectronic synapses have gained increasing attentions as a fundamental building block in the development of neuromorphic visual systems. However, it remains a challenge to integrate multiple functions into a single optoelectronic synapse that can be widely applied in wearable artificial intelligence and implantable neuromorphic vision systems. In this study, a stretchable optoelectronic synapse based on biodegradable ionic gelatin heterojunction is successfully developed. This device exhibits self-powered synaptic plasticity behavior with broad spectral response and excellent elastic properties, yet it degrades rapidly upon disposal. After complete cleavage, the device can be fully repaired within 1 min, which is mainly attributed to the non-covalent interactions between different molecular chains. Moreover, the recovery and reprocessing of the ionic gelatins result in optoelectronic properties that are virtually indistinguishable from their original state, showcasing the resilience and durability of ionic gelatins. The combination of biodegradability, stretchability, self-healing, zero-power consumption, ease of large-scale preparation, and low cost makes the work a major step forward in the development of biodegradable and stretchable optoelectronic synapses.

2.
Nat Commun ; 15(1): 3086, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600063

RESUMO

Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.


Assuntos
Próteses Visuais , Biônica , Retina , Visão Ocular , Percepção Visual
3.
Adv Sci (Weinh) ; 11(19): e2400966, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483027

RESUMO

Ionic memristors can emulate brain-like functions of biological synapses for neuromorphic technologies. Apart from the widely studied excitatory-excitatory and excitatory-inhibitory synapses, reports on memristors with the inhibitory-inhibitory synaptic behaviors remain a challenge. Here, the first biaxially inhibited artificial synapse is demonstrated, consisting of a solid electrolyte and conjugated microporous polymers bilayer as neurotransmitter, with the former serving as an ion reservoir and the latter acting as a confined transport. Due to the migration, trapping, and de-trapping of ions within the nanoslits, the device poses inhibitory synaptic plasticity under both positive and negative stimuli. Remarkably, the artificial synapse is able to maintain a low level of stable nonvolatile memory over a long period of time (≈60 min) after multiple stimuli, with feature-inferencing/-training capabilities of neural node in neuromorphic computing. This work paves a reliable strategy for constructing nanochannel ionic memristive materials toward fully inhibitory synaptic devices.


Assuntos
Eletrólitos , Neurotransmissores , Sinapses , Sinapses/fisiologia , Eletrólitos/química , Porosidade , Plasticidade Neuronal/fisiologia
4.
ACS Appl Mater Interfaces ; 16(10): 13052-13059, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38414333

RESUMO

Smart textiles with multifunction and highly stable performance are essential for their application in wearable electronics. Despite the advancement of various smart textiles through the decoration of conductive materials on textile surfaces, improving their stability and functionality remains a challenging topic. In this study, we developed an ionic textile (i-textile) with air permeability, water resistance, UV resistance, and sensing capabilities through in situ photopolymerization of ionogel onto the textile surface. The i-textile presents air permeability comparable to that of bare textile while possessing enhanced UV resistance. Remarkably, the i-textile maintains excellent electrical properties after washing 20 times or being subjected to 300 stretching cycles at 30% tension. When applied to human joint motion detection, the i-textile-based sensors can effectively distinguish joint motion based on their sensitivity and response speed. This research presents a novel method for developing smart textiles that further advances wearable electronics.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Eletrônica , Eletrodos , Têxteis
5.
Small ; : e2306557, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063820

RESUMO

Ionogels are extremely soft ionic materials that can undergo large deformation while maintaining their structural and functional integrity. Ductile ionogels can absorb energy and resist fracture under external load, making them an ideal candidate for wearable electronics, soft robotics, and protective gear. However, developing high-modulus ionogels with extreme toughness remains challenging. Here, a facile one-step photopolymerization approach to construct an acrylic acid (AA)-2-hydroxyethylacrylate (HEA)-choline chloride (ChCl) eutectogel (AHCE) with ultrahigh modulus and toughness is reported. With rich hydrogen bonding crosslinks and phase segregation, this gel has a 99.1 MPa Young's modulus and a 70.6 MJ m-3 toughness along with 511.4% elongation, which can lift 12 000 times its weight. These features provide extreme damage resistance and electrical healing ability, offering it a protective and strain-sensitive coating to innovate anticutting fabric with motion detection for human healthcare. The work provides an effective strategy to construct robust ionogel materials and smart wearable electronics for intelligent life.

6.
Adv Sci (Weinh) ; 10(30): e2303944, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37635198

RESUMO

Neuromorphic vision based on photonic synapses has the ability to mimic sensitivity, adaptivity, and sophistication of bio-visual systems. Significant advances in artificial photosynapses are achieved recently. However, conventional photosyanptic devices normally employ opaque metal conductors and vertical device configuration, performing a limited hemispherical field of view. Here, a transparent planar photonic synapse (TPPS) is presented that offers dual-side photosensitive capability for nearly panoramic neuromorphic vision. The TPPS consisting of all two dimensional (2D) carbon-based derivatives exhibits ultra-broadband photodetecting (365-970 nm) and ≈360° omnidirectional viewing angle. With its intrinsic persistent photoconductivity effect, the detector possesses bio-synaptic behaviors such as short/long-term memory, experience learning, light adaptation, and a 171% pair-pulse-facilitation index, enabling the synapse array to achieve image recognition enhancement (92%) and moving object detection.

7.
Nat Commun ; 13(1): 4996, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008407

RESUMO

Neuromorphic electronics, which use artificial photosensitive synapses, can emulate biological nervous systems with in-memory sensing and computing abilities. Benefiting from multiple intra/interactions and strong light-matter coupling, two-dimensional heterostructures are promising synaptic materials for photonic synapses. Two primary strategies, including chemical vapor deposition and physical stacking, have been developed for layered heterostructures, but large-scale growth control over wet-chemical synthesis with comprehensive efficiency remains elusive. Here we demonstrate an interfacial coassembly heterobilayer films from perylene and graphene oxide (GO) precursors, which are spontaneously formed at the interface, with uniform bilayer structure of single-crystal perylene and well-stacked GO over centimeters in size. The planar heterostructure device exhibits an ultrahigh specific detectivity of 3.1 × 1013 Jones and ultralow energy consumption of 10-9 W as well as broadband photoperception from 365 to 1550 nm. Moreover, the device shows outstanding photonic synaptic behaviors with a paired-pulse facilitation (PPF) index of 214% in neuroplasticity, the heterosynapse array has the capability of information reinforcement learning and recognition.


Assuntos
Grafite , Perileno , Plasticidade Neuronal , Sinapses/fisiologia
8.
Phys Chem Chem Phys ; 23(46): 26385-26391, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792049

RESUMO

Effective charge separation is essential in plasmon-mediated photochemistry and is usually achieved by constructing plasmon-semiconductor interfaces, which is usually challenging. In this work, by monitoring the plasmon-mediated silver oxidation with in situ Raman spectroscopy, we demonstrate that the adsorbed thiophenol molecules could modulate the rate of photochemical reactions by tuning the charge separation at the plasmon-molecule interfaces. It is found that the thiophenol molecules with strong electron-withdrawing or donating functional groups could accelerate or decelerate the rate of plasmon-mediated silver oxidation, respectively. Owing to the easy tuning of the electronic structures of organic molecules via substitution, our method provides a versatile and convenient approach for the fine modulation of plasmon-mediated photochemical reactions.

9.
Small ; 17(34): e2102060, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34288427

RESUMO

Inspired by the 2D bilayer lipid membranes in nature, a unique supramolecular "push-pull" synergetic strategy toward self-assembled 2D organic crystals (2DOCs) is proposed in this work, which can effectively suppress the interlayer 3D stacking while maintaining the assembly of the intralayer for 2D growth. For this purpose, a model molecule PF-Py consisting of a planar supramolecular "attractor" and a nonplanar steric "repellor" is designed for the solution self-assembly process. Well-defined 2DOCs including crystal nanosheets and millimeter-sized crystal films with layered amphiphile-like packing are obtained, which is analogical to the cell membranes of living organisms. Thanks to the special packing mode, the 2DOCs have fascinating integrated photoelectric property, with high mobility of 7.8 × 10-2 cm2 V-1 s-1 , high crystalline state photoluminescence quantum yield of 55%, and superior deep-blue laser characteristics with a low threshold of 5.51 µJ cm-2 . This supramolecular synergetic strategy advances the design of 2D organic semiconductor crystals for high performance optoelectronics.


Assuntos
Semicondutores
10.
ACS Appl Mater Interfaces ; 13(25): 30205-30212, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34137259

RESUMO

Bioskins possess a great ability to detect and deliver external mechanical or temperature stimuli into identifiable signals such as color changes. However, the integration of visualization with simultaneous detection of multiple complex external stimuli in a single biosensor device remains a challenge. Here we propose an all-solution-processed bioinspired stretchable electronic skin with interactive color changes and four-mode sensing properties. The fabricated biosensor demonstrates sensitive responses to various stimuli including pressure, strain, voltage, and temperature. Sensing visualization is realized by color changes of the e-skin from brown to green and finally bright yellow as a response to intensified external stimuli, suggesting great application potential in military defense, healthcare monitoring, and smart bionic skin.


Assuntos
Colorimetria/instrumentação , Dispositivos Eletrônicos Vestíveis , Colorimetria/métodos , Desenho de Equipamento , Humanos , Pressão , Temperatura
11.
Nanoscale ; 13(2): 724-729, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33393574

RESUMO

Biocompatible materials have received increasing attention as one of the most important building blocks for flexible and transient memories. Herein, a fully biocompatible resistive switching (RS) memory electronic composed of a carbon dot (CD)-polyvinyl pyrrolidone (PVP) nanocomposite and a silver nanowire (Ag NW) network buried in a flexible gelatin film is introduced with promising nonvolatile RS characteristics for flexible and transient memory applications. The fabricated device exhibited a rewritable flash-type memory behavior, such as low operation voltage (≈-1.12 V), high ON/OFF ratio (>102), long retention time (over 104 s), and small bending radius (15 mm). As a proof of degradability, this transient memory can dissolve completely within 90 s after being immersed into deionized water at 55 °C; it can decompose naturally in soil within 6 days. This fully biocompatible memory electronic paves a novel way for flexible and wearable green electronics.

12.
Nanoscale Adv ; 3(15): 4536-4540, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133459

RESUMO

Room temperature phosphorescent (RTP) materials are rising and gaining considerable attention due to their special photo-capture-release ability. Herein, a kind of environmentally friendly RTP composite was devised by microwaving a mixture of carbon dots, boric acid, and urea, in the presence of covalent bonds and hydrogen bonds between each of the components. The resultant RTP material showed ultra-long phosphorescence lifetime up to 1005.6 ms with an outstanding afterglow as long as 9.0 s. Moreover, this afterglow feature with moisture sensitive behavior was explored to achieve multilevel anti-counterfeiting, with the function of complex decryption of encrypted secret information under multiple stimuli. Our results provide a green strategy for scalable synthesis of carbon-based RTP materials, and extend their application scope to high level information security.

13.
Nanoscale Adv ; 3(9): 2475-2480, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36134169

RESUMO

Electronic textiles (e-textiles) typically comprise fabric substrates with electronic components capable of heating, sensing, lighting and data storage. In this work, we rationally designed and fabricated anisotropic light/thermal emitting e-textiles with great mechanical stability based on a sandwich-structured tri-electrode device. By coating silver nanowire network/thermal insulation bilayer on fabrics, an anisotropic thermal emitter can be realized for smart heat management. By further covering the emissive film and the top electrode on the bilayer, light emitters with desirable patterns and colors are extracted from the top surface via an alternative current derived electroluminescence. Both the light and thermal emitting functions can be operated simultaneously or separately. Particularly, our textiles exhibit reliable heating and lighting performance in water, revealing excellent waterproof feature and washing stability.

14.
ACS Appl Mater Interfaces ; 12(46): 51729-51735, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33161720

RESUMO

Suppressing the operating current in resistive memory devices is an effective strategy to minimize their power consumption. Herein, we present an intrinsic low-current memory based on two-dimensional (2D) hybrid heterostructures consisting of partly reduced graphene oxide (p-rGO) and conjugated microporous polymer (CMP) with the merits of being solution-processed, large-scale, and well patterned. The device with the heterostructure of p-rGO/CMP sandwiched between highly reduced graphene oxide (h-rGO) and aluminum electrodes exhibited rewritable and nonvolatile memory behavior with an ultralow operating current (∼1 µA) and efficient power consumption (∼2.9 µW). Moreover, the on/off current ratio is over 103, and the retention time is up to 8 × 103 s, indicating the low misreading rate and high stability of data storage. So far, the value of power is about 10 times lower than those of the previous GO-based memories. The bilayer architecture provides a promising approach to construct intrinsic low-power resistive memory devices.

15.
ACS Nano ; 14(6): 6707-6714, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32437131

RESUMO

Realizing multiple functions and sustainable manufacturing within the same electronic device would be highly attractive from a design and fabrication perspective. Here we demonstrate a recyclable dual-mode thin-film device that can perform both light emission and heat management simultaneously. The device is composed of a dissolvable emitting layer sandwiched between two undissolvable conducting films. The vertical multilayered device enables a highly flexible and foldable multicolor electroluminescent emission ranging from yellow or blue to white, and the coplanar monolayered conductor achieves tunable Joule heat temperature setting. By utilizing selective dissolution and artificial reconstruction of each layered component, the parent device shows full recyclability and reconstructability without severe performance degradation after several recycles. The proof-of concept device provides an ideal strategy to construct a multifunctional film system with recyclability and makes a significant contribution to scientific and technological advancement in low-cost sustainable electronics and optoelectronics.

16.
Nanoscale ; 12(18): 9964-9968, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32373816

RESUMO

Two spirocyclic aromatic hydrocarbon derivatives were prepared to clarify the molecular geometry effects on the regulation of the crystalline morphologies and photophysical behaviors of organic nanocrystals. Due to the different structural symmetry of a spiro-center, distinguishing nanocrystal morphologies with unique crystallization-enhanced/quenched emission was achieved.

17.
Adv Sci (Weinh) ; 7(8): 1902864, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328417

RESUMO

Emerging memory devices, that can provide programmable information recording with tunable resistive switching under external stimuli, hold great potential for applications in data storage, logic circuits, and artificial synapses. Realization of multifunctional manipulation within individual memory devices is particularly important in the More-than-Moore era, yet remains a challenge. Here, both rewritable and nonerasable memory are demonstrated in a single stimuli-responsive polymer diode, based on a nanohole-nanowrinkle bi-interfacial structure. Such synergic nanostructure is constructed from interfacing a nanowrinkled bottom graphene electrode and top polymer matrix with nanoholes; and it can be easily prepared by spin coating, which is a low-cost and high-yield production method. Furthermore, the resulting device, with ternary and low-power operation under varied external stimuli, can enable both reversible and irreversible biomimetic pressure recognition memories using a device-to-system framework. This work offers both a general guideline to fabricate multifunctional memory devices via interfacial nanostructure engineering and a smart information storage basis for future artificial intelligence.

18.
ACS Nano ; 14(4): 3876-3884, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32186191

RESUMO

In the past decades, various alternating current electroluminescent (ACEL) devices, especially the flexible ones, have been developed and used in flat panel display, large-scale decorating, logo display lighting, optical signaling, etc. Transparent plastics are usually used as substrates in ACEL devices; however, they are undegradable and may cause serious environmental pollution. Herein, we have developed a flexible transient ACEL device based on transparent fish gelatin (FG) films. The FG films were made from fish scales, which are sustainable, cost-efficient, and eco-friendly. These films could dissolve in water within seconds at 60 °C and degrade completely within 24 days in soil. The transmittance of these FG films was up to 91.1% in the visible spectrum, comparable to that of polyethylene terephthalate (PET) (90.4%). After forming a composite with silver nanowires (Ag NWs), the Ag NWs-FG film showed a transmittance up to 82.3% and a sheet resistance down to 22.4 Ω sq-1. The fabricated ACEL device based on the Ag NWs-FG film exhibited high flexibility and luminance up to 56.0 cd m-2. The device could be dissolved in water within 3 min. Our work demonstrates that the sustainable, flexible, and transparent FG films are a promising alternative for green and degradable substrates in the field of flexible electronics, including foldable displays, wearable devices, and health monitoring.


Assuntos
Gelatina , Nanofios , Animais , Eletrônica , Peixes , Prata
19.
RSC Adv ; 10(35): 20900-20904, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517775

RESUMO

The facile synthesis of large-area coordination polymer membranes with controlled nanoscale thicknesses is critical towards their applications in information storage electronics. Here, we have reported a facile and substrate-independent interfacial synthesis method for preparing a large-area two-dimensional (2D) coordination polymer membrane at the air-liquid interface. The prepared high-quality 2D membrane could be transferred onto an indium tin oxide (ITO) substrate to construct a nonvolatile memory device, which showed reversible switching with a high ON/OFF current ratio of 103, good stability and a long retention time. Our discovery of resistive switching with nonvolatile bistability based on the substrate-independent growth of the 2D coordination polymer membrane holds significant promise for the development of solution-processable nonvolatile memory devices with a miniaturized device size.

20.
ACS Appl Mater Interfaces ; 12(1): 1103-1109, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31808338

RESUMO

We report the design and preparation of hierarchical hollow-pore nanostructure bilayer conjugated polymer films for high-performance resistive memory devices. By taking the merits of chemical and structural stabilities of a two-dimensional conjugated microporous polymer (2D CMP), a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) film with a hollow surface was spin-coated onto 2D CMP nanofilm directly, constructing a bilayer heterojunction. A two-terminal diode with a configuration of indium tin oxide/2D CMP/hollow MEH-PPV/Al was fabricated by employing the prepared bilayer heterojunction. The device poses flash feature with a high on/off ratio (>105) and a long retention time (>3.0 × 104 s), which is higher than that of most of the reported conjugated polymers memories. Our work offers a general guideline to construct high on/off ratio polymer memories via hierarchical nanostructure engineering in memristive layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...