Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 2169, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461277

RESUMO

Extensive investigations on the moiré magic angle in twisted bilayer graphene have unlocked the emerging field-twistronics. Recently, its optics analogue, namely opto-twistronics, further expands the potential universal applicability of twistronics. However, since heat diffusion neither possesses the dispersion like photons nor carries the band structure as electrons, the real magic angle in electrons or photons is ill-defined for heat diffusion, making it elusive to understand or design any thermal analogue of magic angle. Here, we introduce and experimentally validate the twisted thermotics in a twisted diffusion system by judiciously tailoring thermal coupling, in which twisting an analog thermal magic angle would result in the function switching from cloaking to concentration. Our work provides insights for the tunable heat diffusion control, and opens up an unexpected branch for twistronics -- twisted thermotics, paving the way towards field manipulation in twisted configurations including but not limited to fluids.

4.
Nat Commun ; 14(1): 5107, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607942

RESUMO

Planar super-oscillatory lens (SOL), a far-field subwavelength-focusing diffractive device, holds great potential for achieving sub-diffraction-limit imaging at multiple wavelengths. However, conventional SOL devices suffer from a numerical-aperture-related intrinsic tradeoff among the depth of focus (DoF), chromatic dispersion and focusing spot size. Here, we apply a multi-objective genetic algorithm (GA) optimization approach to design an apochromatic binary-phase SOL having a prolonged DoF, customized working distance (WD), minimized main-lobe size, and suppressed side-lobe intensity. Experimental implementation demonstrates simultaneous focusing of blue, green and red light beams into an optical needle of ~0.5λ in diameter and DOF > 10λ at WD = 428 µm. By integrating this SOL device with a commercial fluorescence microscope, we perform, for the first time, three-dimensional super-resolution multicolor fluorescence imaging of the "unseen" fine structures of neurons. The present study provides not only a practical route to far-field multicolor super-resolution imaging but also a viable approach for constructing imaging systems avoiding complex sample positioning and unfavorable photobleaching.

5.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241284

RESUMO

The infinite effective thermal conductivity (IETC) can be considered to be an equivalence of the effective zero index in photonics. A recent highly rotating metadevice has been discovered to approach near IETC, subsequently demonstrating a cloaking effect. However, this near IETC, related to a rotating radius, is quite inhomogeneous, and the high-speed rotating motor also needs a high energy input, limiting its further applications. Herein, we propose and realize an evolution of this homogeneous zero-index thermal metadevice for robust camouflaging and super-expanding through out-of-plane modulations rather than high-speed rotation. Both the theoretical simulations and experiments verify a homogeneous IETC and the corresponding thermal functionalities beyond cloaking. The recipe for our homogeneous zero-index thermal metadevice involves an external thermostat, which can be easily adjusted for various thermal applications. Our study may provide meaningful insights into the design of powerful thermal metadevices with IETCs in a more flexible way.

6.
Opt Express ; 31(10): 15848-15863, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157676

RESUMO

High-sensitivity, reproducible, and low-cost substrate has been a major obstacle for practical sensing application of surface-enhancement Raman scattering (SERS). In this work, we report a type of simple SERS substrate which is composed of metal-insulator-metal (MIM) structure of Ag nanoisland (AgNI)-SiO2-Ag film (AgF). The substrates are fabricated by only evaporation and sputtering processes, which are simple, fast and low-cost. By combining the hotspots and interference-enhanced effects in AgNIs and the plasmonic cavity (SiO2) between AgNIs and AgF, the proposed SERS substrate shows an enhancement factor (EF) of 1.83 × 108 with limit of detection (LOD) down to 10-17 mol/L for rhodamine 6 G (R6G) molecules. The EFs are ∼18 times higher than that of conventional AgNIs without MIM structure. In addition, the MIM structure shows excellent reproducibility with relative standard deviation (RSD) less than 9%. The proposed SERS substrate is fabricated only with evaporation and sputtering technique and the conventionally used lithographic methods or chemical synthesis are not required. This work provides a simple way to fabricate ultrasensitive and reproducible SERS substrates which show great promise for developing various biochemical sensors with SERS.

7.
Entropy (Basel) ; 25(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238545

RESUMO

Quantum control of lossy systems is known to be achieved by adiabatic passage via an approximate dark state relatively immune to loss, such as the emblematic example of stimulated Raman adiabatic passage (STIRAP) featuring a lossy excited state. By systematic optimal control study, via the Pontryagin maximum principle, we design alternative more efficient routes that, for a given admissible loss, feature an optimal transfer with respect to the cost defined as (i) the pulse energy (energy minimization) or (ii) the pulse duration (time minimization). The optimal controls feature remarkably simple sequences in the respective cases: (i) operating far from a dark state, of π-pulse type in the limit of low admissible loss, or (ii) close to the dark state with a counterintuitive pulse configuration sandwiched by sharp intuitive sequences, referred to as the intuitive/counterintuitive/intuitive (ICI) sequence. In the case of time optimization, the resulting stimulated Raman exact passage (STIREP) outperforms STIRAP in term of speed, accuracy, and robustness for low admissible loss.

8.
Nat Nanotechnol ; 18(1): 64-70, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509927

RESUMO

Various optical crystals possess permittivity components of opposite signs along different principal directions in the mid-infrared regime, exhibiting exotic anisotropic phonon resonances. Such materials with hyperbolic polaritons-hybrid light-matter quasiparticles with open isofrequency contours-feature large-momenta optical modes and wave confinement that make them promising for nanophotonic on-chip technologies. So far, hyperbolic polaritons have been observed and characterized in crystals with high symmetry including hexagonal (boron nitride), trigonal (calcite) and orthorhombic (α-MoO3 or α-V2O5) crystals, where they obey certain propagation patterns. However, lower-symmetry materials such as monoclinic crystals were recently demonstrated to offer richer opportunities for polaritonic phenomena. Here, using scanning near-field optical microscopy, we report the direct real-space nanoscale imaging of symmetry-broken hyperbolic phonon polaritons in monoclinic CdWO4 crystals, and showcase inherently asymmetric polariton excitation and propagation associated with the nanoscale shear phenomena. We also introduce a quantitative theoretical model to describe these polaritons that leads to schemes to enhance crystal asymmetry via the damping loss of phonon modes. Ultimately, our findings show that polaritonic nanophotonics is attainable using natural materials with low symmetry, favouring a versatile and general way to manipulate light at the nanoscale.

9.
Philos Trans A Math Phys Eng Sci ; 380(2239): 20210270, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36335949

RESUMO

Robust and efficient manipulation of electron spin qubits in quantum dots is of great significance for the reliable realization of quantum computers and execution of quantum algorithms. In this paper, we study the robust control on a singlet-triplet qubit based on inverse engineering, one technique of shortcuts to adiabaticity (STA), in a nanowire double quantum dot in the presence of magnetic field and strong spin-orbit coupling. The optimization of STA with respect to the systematic errors, contributed from the control field and the perturbative interaction, is explored. Moreover, we also apply optimal control techniques combining with STA, referred to as robust inverse optimization, to design optimal control fields and optimal operation time. This article is part of the theme issue 'Shortcuts to adiabaticity: theoretical, experimental and interdisciplinary perspectives'.

10.
Nanoscale Adv ; 4(8): 2011-2017, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133413

RESUMO

Lithography is one of the most key technologies for integrated circuit (IC) manufacturing and micro/nano-functional device fabrication, while the imaging objective lens plays one important role. Due to the curved surface of the conventional objective lens, the imaging field of view is limited and the objective lens system is complex. In this paper, a planar objective lens based on the optical negative refraction principle is demonstrated for achieving optical axis free and long depth of focus imaging nanolithography. Through employing a hyperbolic metamaterial composed of silver/titanium dioxide multilayers, plasmonic waveguide modes could be generated in multilayers, which results in optical negative refraction and then flat imaging at ultraviolet wavelength. The corresponding imaging characteristics are investigated in simulation and experiment. At the I-line wavelength of 365 nm, the highest imaging resolution of 165 nm could be realized in the 100 nm photoresist layer under the working gap of 100 nm between the objective lens and substrate. Moreover, this planar objective lens has good ability for cross-scale and two-dimensional imaging lithography, and is similar to a conventional projection objective lens. It is believed that this kind of planar objective lens will provide a promising avenue for low-cost nanofabrication scenarios in the near future.

13.
Phys Rev Lett ; 127(17): 176101, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34739271

RESUMO

The polarization singularity in momentum space has recently been discovered as a new class of topological signatures of Bloch modes in photonic crystal slabs concerning the far-field radiations, beyond its near-field description with widely explored topological band theory. Bound states in the continuum (BICs) in photonic crystal slabs are demonstrated as vortex eigenpolarization singularities in momentum space and the circular polarization points (C points) are also obtained based on BICs, opening up more possibilities for exotic light scattering and various topological phenomena of singular optics. Here, focusing on the nondegenerate bands, we report the generation to annihilation of two pairs of C points in momentum space in the photonic crystal slabs with inversion symmetry but broken up-down mirror symmetry. Interestingly, as the C points evolve with the structure parameter, we find two merging processes of C points, where an accidental at-Γ BIC and unidirectional radiative resonances with leaky channels of drastically different radiative lifetime emerge. The whole evolution is governed by the global charge conservation and the sum of topological charges equals to zero. Our findings suggest a novel recipe for dynamic generation and manipulation of various polarization singularities in momentum space and might shed new light to control the resonant and topological properties of light-matter interactions.

14.
Nat Commun ; 11(1): 6028, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247120

RESUMO

Naturally-occurring thermal materials usually possess specific thermal conductivity (κ), forming a digital set of κ values. Emerging thermal metamaterials have been deployed to realize effective thermal conductivities unattainable in natural materials. However, the effective thermal conductivities of such mixing-based thermal metamaterials are still in digital fashion, i.e., the effective conductivity remains discrete and static. Here, we report an analog thermal material whose effective conductivity can be in-situ tuned from near-zero to near-infinity κ. The proof-of-concept scheme consists of a spinning core made of uncured polydimethylsiloxane (PDMS) and fixed bilayer rings made of silicone grease and steel. Thanks to the spinning PDMS and its induced convective effects, we can mold the heat flow robustly with continuously changing and anisotropic κ. Our work enables a single functional thermal material to meet the challenging demands of flexible thermal manipulation. It also provides platforms to investigate heat transfer in systems with moving components.

15.
Chem Rev ; 120(21): 11986-12043, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33112599

RESUMO

Metal atoms dispersed on the oxide supports constitute a large category of single-atom catalysts. In this review, oxide supported single-atom catalysts are discussed about their synthetic procedures, characterizations, and reaction mechanism in thermocatalysis, such as water-gas shift reaction, selective oxidation/hydrogenation, and coupling reactions. Some typical oxide materials, including ferric oxide, cerium oxide, titanium dioxide, aluminum oxide, and so on, are intentionally mentioned for the unique roles as supports in anchoring metal atoms and taking part in the catalytic reactions. The interactions between metal atoms and oxide supports are summarized to give a picture on how to stabilize the atomic metal centers, and rationally tune the geometric structures and electronic states of single atoms. Furthermore, several directions in fabricating single-atom catalysts with improved performance are proposed on the basis of state-of-the-art understanding in metal-oxide interactions.

16.
Angew Chem Int Ed Engl ; 59(42): 18522-18526, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32656990

RESUMO

Catalytic combustion is promising in removing trace amounts of CH4 to address serious environmental concerns. Supported Pd-based catalysts are most effective but often suffer from low stability in applications owing to the water-vapor-induced sintering. Herein, we develop a universal strategy to prepare irreducible-oxide-modified Pd/MgAl2 O4 catalysts which show high activity and excellent stability against both hydrothemal aging at elevated temperatures and deactivation in long-term reaction under wet conditions. The addition of irreducible oxides inhibited the deep oxidation of Pd in the oxygen-rich conditions, which preserved not only the epitaxial structure but also a suitable active phase of Pd-PdOx on MgAl2 O4 , thus promoting both activity and stability. This work provides new insights into the effect of metal-oxide interaction on CH4 combustion and offers an avenue to design hydrothermally stable and active combustion catalysts for industrial applications.

17.
Nat Commun ; 11(1): 1263, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152283

RESUMO

Single-atom catalysts (SACs) have demonstrated superior catalytic performance in numerous heterogeneous reactions. However, producing thermally stable SACs, especially in a simple and scalable way, remains a formidable challenge. Here, we report the synthesis of Ru SACs from commercial RuO2 powders by physical mixing of sub-micron RuO2 aggregates with a MgAl1.2Fe0.8O4 spinel. Atomically dispersed Ru is confirmed by aberration-corrected scanning transmission electron microscopy and X-ray absorption spectroscopy. Detailed studies reveal that the dispersion process does not arise from a gas atom trapping mechanism, but rather from anti-Ostwald ripening promoted by a strong covalent metal-support interaction. This synthetic strategy is simple and amenable to the large-scale manufacture of thermally stable SACs for industrial applications.

18.
Phys Rev Lett ; 125(25): 250403, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416376

RESUMO

We develop an inverse geometric optimization technique that allows the derivation of optimal and robust exact solutions of low-dimension quantum control problems driven by external fields. We determine in the dynamical variable space optimal trajectories constrained to robust solutions by Euler-Lagrange optimization; the control fields are then derived from the obtained robust geodesics and the inverted dynamical equations. We apply this method, referred to as robust inverse optimization (RIO), to design optimal control fields producing a complete or half population transfer and a not quantum gate robust with respect to the pulse inhomogeneities. The method is versatile and can be applied to numerous quantum control problems, e.g., other gates, other types of imperfections, Raman processes, or dynamical decoupling of undesirable effects.

19.
Nano Lett ; 18(10): 6489-6493, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192547

RESUMO

The poor thermodynamic stability of gold nanoparticles (NPs) makes it very challenging to stabilize them in small sizes at elevated temperatures. Herein, we report the preparation of antisintering Au nanocatalyst by rationally selecting the sublattice matched MgGa2O4 spinel as support based on theoretical predictions. Au/MgGa2O4 retains Au NPs of 2-5 nm even after aging over the melting temperature of bulk gold (1064 °C)! By identifying the stable structure, the extraordinary stability is found to arise from the formation of a new phase structure, namely Au-MgGa2O4 metal-oxide "hetero-bicrystal" that remains as crystallite without melting even at 1100 °C. More than 80% of the loaded Au can be efficiently stabilized so that the catalysts can exhibit excellent low-temperature activities for diesel exhaust (CO and C3H6) oxidation after severely thermal and hydrothermal aging. These results may pave ways for constructing antisintering gold nanocatalysts for industrial applications.

20.
Opt Express ; 25(17): 20511-20521, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041731

RESUMO

Interference lithography based on surface plasmon polaritons has been proven to break the diffraction limit and deliver the high imaging resolution. However, most previously reported studies suffer from the inflexible pattern pitch for a certain structure ascribed to fixed excitation mode, which limits the applications in micro-/nano- fabrications. In this work, the large area deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons (BPPs) is proposed. By simply tuning the incident angle, the spatial frequencies of the selected BPPs modes squeezed through hyperbolic metamaterial changes correspondingly. As a result, the pitch of the interference pattern is continuously altered. The results demonstrate that one-dimensional and two-dimensional periodic patterns with pitch resolution ranging from 45 nm (~λ/10) to 115 nm (~λ/4) can be generated under 436 nm illumination. Additionally, the general method of designing such an interference lithography system is also discussed, which can be used for nanoscale fabrication in this fashion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...