Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Oncol ; 65(2)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874004

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that certain of the EdU assay data shown in Fig. 7E on p. 2418 had already appeared in different form in a previously published paper written by different authors at different research institutes. Owing to the fact that the contentious data in the above article had already been published prior to its submission to International Journal of Oncology, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused.  [International Journal of Oncology 53: 2409­2422, 2018; DOI: 10.3892/ijo.2018.4586].

2.
Int J Oncol ; 53(6): 2409-2422, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30320378

RESUMO

Mammalian STE20-like kinase 1 (Mst1) is well recognized as a major tumor suppressor in cancer development, growth, metabolic reprogramming, metastasis, cell death and recurrence. However, the roles of Mst1 in non-small cell lung cancer (NSCLC) A549 cell phenotypic alterations remain to be elucidated. The present study aimed to explore the functional role and underlying mechanisms of Mst1 with regards to A549 cell proliferation, migration and apoptosis; this study focused on mitochondrial homeostasis and Rho-associated coiled-coil containing protein kinase 1 (ROCK1)/F­actin pathways. The results demonstrated that Mst1 was downregulated in A549 cells compared with in a normal pulmonary epithelial cell line. Subsequently, overexpression of Mst1 in A549 cells reduced cell viability and promoted cell apoptosis. Furthermore, overexpression of Mst1 suppressed A549 cell proliferation and migration. At the molecular level, the reintroduction of Mst1 in A549 cells led to activation of mitochondrial apoptosis, as evidenced by a reduction in mitochondrial potential, overproduction of ROS, cytochrome c release from the mitochondria into the nucleus, and upregulation of pro-apoptotic protein expression. In addition, Mst1 overexpression was closely associated with impaired mitochondrial respiratory function and suppressed cellular energy metabolism. Functional studies illustrated that Mst1 overexpression activated ROCK1/F-actin pathways, which highly regulate mitochondrial function. Inhibition of ROCK1/F-actin pathways in A549 cells sustained mitochondrial homeostasis, alleviated caspase-9-dependent mitochondrial apoptosis, enhanced cancer cell migration and increased cell proliferation. In conclusion, these data firmly established the regulatory role of Mst1 in NSCLC A549 cell survival via the modulation of ROCK1/F-actin pathways, which may provide opportunities for novel treatment modalities in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Células A549 , Actinas/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espécies Reativas de Oxigênio/metabolismo , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...