Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(24): 9876-9882, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480706

RESUMO

Atomic-scale magnetic field sensors based on nitrogen vacancy (NV) defects in diamonds are an exciting platform for nanoscale nuclear magnetic resonance (NMR) spectroscopy. The detection of NMR signals from a few zeptoliters to single molecules or even single nuclear spins has been demonstrated using NV centers close to the diamond surface. However, fast molecular diffusion of sample molecules in and out of the nanoscale detection volumes impedes their detection and limits current experiments to solid-state or highly viscous samples. Here, we show that restricting diffusion by confinement enables nanoscale NMR spectroscopy of liquid samples. Our approach uses metal-organic frameworks (MOF) with angstrom-sized pores on a diamond chip to trap sample molecules near the NV centers. This enables the detection of NMR signals from a liquid sample, which would not be detectable without confinement. These results set the route for nanoscale liquid-phase NMR with high spectral resolution.


Assuntos
Estruturas Metalorgânicas , Nitrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Diamante/química
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082146

RESUMO

NMR is a noninvasive, molecular-level spectroscopic technique widely used for chemical characterization. However, it lacks the sensitivity to probe the small number of spins at surfaces and interfaces. Here, we use nitrogen vacancy (NV) centers in diamond as quantum sensors to optically detect NMR signals from chemically modified thin films. To demonstrate the method's capabilities, aluminum oxide layers, common supports in catalysis and materials science, are prepared by atomic layer deposition and are subsequently functionalized by phosphonate chemistry to form self-assembled monolayers. The surface NV-NMR technique detects spatially resolved NMR signals from the monolayer, indicates chemical binding, and quantifies molecular coverage. In addition, it can monitor in real time the formation kinetics at the solid-liquid interface. With our approach, we show that NV quantum sensors are a surface-sensitive NMR tool with femtomole sensitivity for in situ analysis in catalysis, materials, and biological research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...