Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Food Res Int ; 188: 114352, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823826

RESUMO

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Assuntos
Digestão , Microgéis , Paladar , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Humanos , Microgéis/química , Manipulação de Alimentos/métodos , Trato Gastrointestinal/metabolismo , Sensação
2.
Heliyon ; 10(10): e31362, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813198

RESUMO

Lithium-ion batteries (LIBs) are promising secondary batteries that are widely used in portable electronic devices, electric vehicles and smart grids. The design and synthesis of high-performance electrode materials play a crucial role in achieving lithium-ion batteries with high energy density, prolonged cycle life, and superior safety. CoO has attracted significant attention as a negative electrode material for lithium-ion batteries due to its high theoretical capacity and abundant resources. However, its limited conductivity and suboptimal cycling performance impede its potential applications. The study proposes a novel micro-tube reaction method for the synthesis of Co@CoO/C, utilizing Kapok fiber as a template with a special hollow structure. The microstructure and composition of the samples were characterized using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After conducting electrochemical performance tests, it was discovered that at a current density of 100 mA/g and within the range of 0.01-3.0 V for 50 charge and discharge cycles. Co@CoO/C composite negative electrode exhibits a reversible lithium insertion specific capacity of 499.8 mAh/g and keep a discharge capacity retention rate of 97.6 %. The greatly improved lithium storage and stability performance of Co@CoO/C composite anode is mainly attributed to the synergistic effect between Co@CoO nanoparticles and the kapok carbon microtubule structure.

3.
Drug Des Devel Ther ; 18: 1583-1602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765877

RESUMO

Background: Knee osteoarthritis (KOA) is a persistent degenerative condition characterized by the deterioration of cartilage. The Chinese herbal formula Radix Rehmanniae Praeparata- Angelica Sinensis-Radix Achyranthis Bidentatae (RAR) has often been used in effective prescriptions for KOA as the main functional drug, but its underlying mechanism remains unclear. Therefore, network pharmacology and verification experiments were employed to investigate the impact and mode of action of RAR in the treatment of KOA. Methods: The destabilization of the medial meniscus model (DMM) was utilized to assess the anti-KOA effect of RAR by using gait analysis, micro-computed tomography (Micro-CT), and histology. Primary chondrocytes were extracted from the rib cartilage of a newborn mouse. The protective effects of RAR on OA cells were evaluated using a CCK-8 assay. The antioxidative effect of RAR was determined by measuring reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione (GSH) production. Furthermore, network pharmacology and molecular docking were utilized to propose possible RAR targets for KOA, which were further verified through experiments. Results: In vivo, RAR significantly ameliorated DMM-induced KOA characteristics, such as subchondral bone sclerosis, cartilage deterioration, gait abnormalities, and the degree of knee swelling. In vitro, RAR stimulated chondrocyte proliferation and the expression of Col2a1, Comp, and Acan. Moreover, RAR treatment significantly reduced ROS accumulation in an OA cell model induced by IL-1ß and increased the activity of antioxidant enzymes (SOD and GSH). Network pharmacology analysis combined with molecular docking showed that Mapk1 might be a key therapeutic target. Subsequent research showed that RAR could downregulate Mapk1 mRNA levels in IL-1ß-induced chondrocytes and DMM-induced rats. Conclusion: RAR inhibited extracellular matrix (ECM) degradation and oxidative stress response via the MAPK signaling pathway in KOA, and Mapk1 may be a core target.


Assuntos
Achyranthes , Angelica sinensis , Medicamentos de Ervas Chinesas , Farmacologia em Rede , Osteoartrite do Joelho , Animais , Angelica sinensis/química , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Camundongos , Achyranthes/química , Rehmannia/química , Simulação de Acoplamento Molecular , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Ratos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38643450

RESUMO

Latuda® is a novel antipsychotic drug for schizophrenia and bipolar depression. A bioequivalence trial was performed to investigate the bioequivalence of Latuda® and its generic drug lurasidone. Two independent trials were carried out, each involving 28 subjects. In the fasting trial, subjects were randomly assigned to two groups (1:1 ratio), receiving either 40 mg of generic lurasidone or Latuda®. After a 7-day washout period, subjects entered the second period with a crossover administration of 40 mg of generic lurasidone or Latuda®. The postprandial study design was similar to that of the fasting study. In the fasting study, the pharmacokinetic (PK) parameter values of generic lurasidone and Latuda® were as follows: the Cmax was 28.84 ± 19.34 ng/ml and 28.22 ± 21.19 ng/ml, respectively; the AUC0-t was 121.39 ± 58.47 h*ng/ml and 118.35 ± 52.24 h*ng/ml, respectively; and the AUC0-∞ was 129.63 ± 63.26 h*ng/ml and 126.59 ± 57.99 h*ng/ml, respectively. The primary pharmacokinetic parameter, Cmax, was assessed for equivalence using reference-scaled average bioequivalence (RSABE), while other parameters (AUC0-t, AUC0-∞) were evaluated using average bioequivalence (ABE). The results indicate that both Cmax and AUC meet the equivalence criteria. In the postprandial study, the PK values of generic lurasidone and Latuda® were as follows: the Cmax was 74.89 ± 32.06 ng/ml and 83.51 ± 33.52 ng/ml, respectively; the AUC0-t was 274.77 ± 103.05 h*ng/ml and 289.26 ± 95.25 h*ng/ml, respectively; and the AUC0-∞ was 302.44 ± 121.60 h*ng/ml and 316.32 ± 109.04 h*ng/ml, respectively. The primary pharmacokinetic parameters (Cmax, AUC0-t, AUC0-∞) were assessed for equivalence using ABE, and both met the equivalence criteria. In the study, lurasidone and Latuda® both exhibited acceptable safety and tolerability. The results displayed that lurasidone and Latuda® were bioequivalent and safe in healthy Chinese participants. Clinical Trial Registry: This trial is registered at chinadrugtrials.org.cn (no.: CTR20191717, date: 2019.08.29).

5.
Huan Jing Ke Xue ; 45(5): 2507-2515, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629516

RESUMO

To study the long-term variation in ozone (O3) pollution in Sichuan Basin,the spatiaotemporal distribution of O3 concentrations during 2017 to 2020 was analyzed using ground-level O3 concentration data and meteorological observation data from 18 cities in the basin. The dominant meteorological factors affecting the variation in O3 concentration were screened out,and a prediction model between meteorological factors and O3 concentration was constructed based on a random forest model. Finally,a prediction analysis of O3 pollution in the Sichuan Basin urban agglomeration during 2020 was carried out. The results showed that:① O3 concentrations displayed a fluctuating trend during the period from 2017 to 2020,with a downward trend in 2019 and a rebound in 2020. ② The fluctuating trend of O3 concentration was significantly influenced by relative humidity,daily maximum temperature,and sunshine hours,whereas wind speed,air pressure,and precipitation had less impact. The linear relationships between meteorological factors were different. Air pressure was negatively correlated with other meteorological factors,whereas the remaining meteorological factors had a positive correlation. ③ The goodness of fit statistics (R2) between the predicted and actual values of the O3 prediction model constructed based on random forest demonstrated a strong predictive performance and ability to accurately forecast the long-term daily variations in O3 concentration. The random forest O3 prediction model exhibited excellent stability and generalization capability. ④ The prediction analysis of O3 concentrations in 18 cities in the basin showed that the explanation rate of variables in the prediction model reached over 80% in all cities (except Ya'an),indicating that the random forest model predicted the trend of O3 concentration accurately.

6.
Sci Rep ; 14(1): 9691, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678071

RESUMO

The time-varying temperature distributions on bridge structures may remarkably change structural performance, which may result in differential strain/stress responses on structural members compared with the design conditions. Therefore, it is crucial to have a comprehensive understanding of temperature distributions and its effects on bridges. In this study, taking advantage of structural health monitoring technology, 1-year field monitoring data collected from a long-span suspension bridge were used to investigate the temperature distributions and their effects on the steel box girder. Specifically, the distributions and probability statistics of temperatures on the top and bottom plates were firstly analyzed. Based on which, the transverse and vertical temperature differences on the box girder were further examined, moreover, the representative values of temperature differences for various return periods were calculated by exceedance probability method. At end, a temperature prediction method was proposed to simulated the temperature field distributions during bridge life cycle, to provide substantial temperature data for estimating future operation condition. The results of this study were beneficial to structural evaluation of in-service bridges to ensure their serviceability and integrity in the life cycle.

7.
Cancer Lett ; 590: 216842, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38582395

RESUMO

Platinum-based neoadjuvant therapy represented by cisplatin is widely employed in treating Triple-Negative Breast Cancer (TNBC), a particularly aggressive subtype of breast cancer. Nevertheless, the emergence of cisplatin resistance presents a formidable challenge to clinical chemotherapy efficacy. Herein, we revealed the critical role of tumor microenvironment (TME) derived exosomal miR-3960 and phosphorylation at the S16 site of PIMREG in activating NF-κB signaling pathway and promoting cisplatin resistance of TNBC. Detailed regulatory mechanisms revealed that SOD1-upregulated fibroblasts secrete miR-3960 and are then transported into TNBC cells via exosomes. Within TNBC cells, miR-3960 targets and inhibits the expression of BRSK2, an AMPK protein kinase family member. Furthermore, we emphasized that BRSK2 contributes to ubiquitination degradation of PIMREG and modulates subsequent activation of the NF-κB signaling pathway by mediating PIMREG phosphorylation at the S16 site, ultimately affects the cisplatin resistance of TNBC. In conclusion, our research demonstrated the crucial role of SOD1high fibroblast, exosomal miR-3960 and S16 site phosphorylated PIMREG in regulating the NF-κB signaling pathway and cisplatin resistance of TNBC. These findings provided significant potential as biomarkers for accurately diagnosing cisplatin-resistant TNBC patients and guiding chemotherapy strategy selection.


Assuntos
Cisplatino , Resistencia a Medicamentos Antineoplásicos , Exossomos , MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Exossomos/metabolismo , Exossomos/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , NF-kappa B/genética , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
8.
Oncogene ; 43(21): 1581-1593, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565942

RESUMO

Deubiquitinating enzymes (DUBs) are promising targets for cancer therapy because of their pivotal roles in various physiological and pathological processes. Among these, ubiquitin-specific peptidase 26 (USP26) is a protease with crucial regulatory functions. Our study sheds light on the upregulation of USP26 in colorectal cancer (CRC), in which its increased expression correlates with an unfavorable prognosis. Herein, we evidenced the role of USP26 in promoting CRC tumorigenesis in a parkin RBR E3 ubiquitin-protein ligase (PRKN) protein-dependent manner. Our investigation revealed that USP26 directly interacted with PRKN protein, facilitating its deubiquitination, and subsequently reducing its activity. Additionally, we identified the K129 site on PRKN as a specific target for USP26-mediated deubiquitination. Our research highlights that a K-to-R mutation at the site on PRKN diminishes its potential for activation and ability to mediate mitophagy. In summary, our findings underscore the significance of USP26-mediated deubiquitination in restraining the activation of the PRKN-mediated mitophagy pathway, ultimately driving CRC tumorigenesis. This study not only elucidated the multifaceted role of USP26 in CRC but also introduced a promising avenue for therapeutic exploration through the development of small molecule inhibitors targeting USP26. This strategy holds promise as a novel therapeutic approach for CRC.


Assuntos
Carcinogênese , Neoplasias Colorretais , Mitofagia , Ubiquitina-Proteína Ligases , Ubiquitinação , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Mitofagia/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Camundongos , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
9.
Nanotechnology ; 35(30)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38598248

RESUMO

Membrane distillation technology could utilize low-grade heat to desalinate brine, but the membrane material often suffers from disadvantages of low permeation flux and weak robustness to contaminants. To address these issues, the commercial polytetrafluoroethylene (PTFE) membrane was modified by cost-effective chemicals of tannic acid and (3-Aminopropyl)-triethoxysilane (APTES) to construct hydrophilic/underwater superoleophobic nano-rough structures on the surface to enhance its flux and oil-fouling resistance in direct contact membrane distillation. The results show that a high underwater oil contact angle of 180° is observed to the membrane surface due to the rough nanostructures functionalized by abundant hydroxyl groups. Despite the additional mass transfer resistance provided by the rough nanostructures, the flux was increased noticeably. This is mainly attributed to the strong interactions between the abundant hydroxyl groups of hydrophilic layer surface and water molecules, leading to a part of free water staying at intermediate transition state (IW). The mass transfer resistance of the hydrophilic layer itself is reduced as a consequence of decreased evaporation enthalpy of water, thereby increasing the flux. Moreover, while the flux of the pristine membrane is reduced by 84.18%, the flux of Janus membrane remains the same when treating mineral oil brine emulsions with oil concentration up to 1500 ppm in comparison with the result for 35 g l-1brine solution, indicating that the Janus membrane is safe from the oil contamination. Our work provides a fine guidance for membrane distillation to treat high oily brine.

10.
ACS Omega ; 9(11): 12665-12675, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524499

RESUMO

Currently, research surrounding low-salinity water flooding predominantly focuses on medium- to high-permeability sandstone reservoirs. Nevertheless, further investigation is necessary to implement this technique with regard to tight sandstone reservoirs. The present study comprises a series of experiments conducted on the crude oil and core of the Ordos Chang 6 reservoir to investigate the influence of ionic composition on low-salinity water flooding in tight oil reservoirs. The change in wettability on the rock surface was analyzed by using the contact angle experiment. The change in recovery rate was analyzed using a core displacement experiment. The reaction between rock fluids was analyzed using an ion chromatography experiment. Additionally, a nuclear magnetic resonance (NMR) experiment was used to analyze the mobilization law of crude oil and the change in wettability on the scale of the rock core. This led to a comprehensive discussion of the law and mechanism of enhancing the recovery rate via low-salinity water flooding from various perspectives. Experiments show that low-salinity water flooding is an effective technique for enhancing recovery in tight sandstone reservoirs. Altering the ionic composition of injected water can improve the water wettability of the rock surface and enhance recovery. Decreasing the mass concentration of Ca2+ or increasing the mass concentration of SO42- can prompt the ion-exchange reaction on the rock surface and detachment of polar components from the surface. Consequently, the wettability of the rock surface strengthens, augmenting the recovery process. Nuclear magnetic resonance experiments evidence that low-salinity water injection, with ion adjustment, significantly alters the interactions between the rock and fluid in tight sandstone reservoirs. As a result, the T2 signal amplitude decreases significantly, residual oil saturation reduces considerably, and the hydrophilic nature of the rock surface increases.

11.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398507

RESUMO

The conversion of lignite into aromatic compounds by highly active catalysts is a key strategy for lignite valorization. In this study, Ni/NiO@NC nanocomposites with a high specific surface area and a vesicular structure were successfully prepared via a facile sol-gel method. The Ni/NiO@NC catalysts exhibited excellent catalytic activity for the catalytic hydroconversion (CHC) of benzyloxybenzene (as lignite-related modeling compounds) under mild conditions (120 °C, 1.5 MPa H2, 60 min). The possible mechanism of the catalytic reaction was investigated by analyzing the type and content of CHC reaction products at different temperatures, pressures, and times. More importantly, the magnetic catalyst could be conveniently separated by a magnet after the reaction, and it maintained high catalytic efficiency after six reuses. This study provides an efficient and recyclable catalyst for the cleavage of >CH-O bonds in lignite, thereby offering another way for improved utilization of lignite.

12.
Biochem Genet ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324134

RESUMO

Non-union fractures pose a significant clinical challenge, often leading to prolonged pain and disability. Understanding the molecular mechanisms underlying non-union fractures is crucial for developing effective therapeutic interventions. This study integrates bioinformatics analysis and experimental validation to unravel key genes and pathways associated with non-union fractures. We identified differentially expressed genes (DEGs) between non-union and fracture healing tissues using bioinformatics techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to elucidate the biological processes and pathways involved. Common DEGs were identified, and a protein-protein interaction (PPI) network was constructed. Fibronectin-1 (FN1), Thrombospondin-1 (THBS1), and Biglycan (BGN) were pinpointed as critical target genes for non-union fracture treatment. Experimental validation involved alkaline phosphatase (ALP) and Alizarin Red staining to confirm osteogenic differentiation. Our analysis revealed significant alterations in pathways related to cell behavior, tissue regeneration, wound healing, infection, and immune responses in non-union fracture tissues. FN1, THBS1, and BGN were identified as key genes, with their upregulation indicating potential disruptions in the bone remodeling process. Experimental validation confirmed the induction of osteogenic differentiation. The study provides comprehensive insights into the molecular mechanisms of non-union fractures, emphasizing the pivotal roles of FN1, THBS1, and BGN in extracellular matrix dynamics and bone regeneration. The findings highlight potential therapeutic targets and pathways for further investigation. Future research should explore interactions between these genes, validate results using in vivo fracture models, and develop tailored treatment strategies for non-union fractures, promising significant advances in clinical management.

13.
J Pain Res ; 17: 677-685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375406

RESUMO

Purpose: The pericapsular nerve group (PENG) block provides satisfactory postoperative analgesia without hampering motor function for total hip arthroplasty (THA); however, unexpected motor block has been observed clinically. It is unknown whether this motor block is related to the dose of ropivacaine. We aimed to conduct a prospective randomized trial to test whether reducing the volume or concentration of ropivacaine was better for less motor block after PENG block. Patients and Methods: Ninety-nine patients with fracture or femoral head necrosis scheduled for THA were randomly allocated to receive 20 mL 0.5% ropivacaine (Group A), 20 mL 0.25% ropivacaine (Group B), and 10 mL 0.5% ropivacaine (Group C). The primary outcome was the incidence of postoperative quadriceps motor block at 6 hours. Secondary outcomes were the incidence of postoperative quadriceps motor block at 0, 12, 24 and 48 hours; pain scores on the numeric rating scale (NRS) at all postoperative time points (0, 6, 12, 24, and 48 hours); the time to first walk; the incidence of rescue analgesia; side effects such as dizziness, ache, nausea, and vomiting; and patient satisfaction. Results: Compared with Group A, Group C resulted in a lower incidence of quadriceps motor block at 0 hours, 6 hours and 12 hours postoperatively (P < 0.05), while Group B only resulted in a lower incidence of motor block at 12 hours postoperatively (P < 0.05). No intergroup differences were found in terms of postoperative pain scores, the incidence of rescue analgesia, adverse events or patient satisfaction (P > 0.05). Conclusion: A higher incidence of motor blockade was observed when 20 mL of 0.5% ropivacaine was administered, which was mainly caused by the excessive volume. Therefore, we recommend performing PENG block with 10 mL 0.5% ropivacaine.

14.
Biomater Sci ; 12(7): 1750-1760, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38375548

RESUMO

Diabetes mellitus (DM) is characterized by prolonged hyperglycemia, impaired vascularization, and serious complications, such as blindness and chronic diabetic wounds. About 25% of patients with DM are estimated to encounter impaired healing of diabetic wounds, often leading to lower limb amputation. Multiple factors are attributed to the non-healing of diabetic wounds, including hyperglycaemia, chronic inflammation, and impaired angiogenesis. It is imperative to develop more efficient treatment strategies to tackle healing difficulties in diabetic wounds. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising for diabetic wound healing considering their anti-inflammatory, pro-angiogenic and pro-proliferative activities. A histone deacetylase 7 (HDAC7)-derived 7-amino-acid peptide (7A) was shown to be highly effective for angiogenesis. However, it has never been investigated whether MSC-EVs are synergistic with 7A for the healing of diabetic wounds. Herein, we propose that MSC-EVs can be combined with 7A to greatly promote diabetic wound healing. The combination of EVs and 7A significantly improved the migration and proliferation of skin fibroblasts. Moreover, EVs alone significantly suppressed LPS-induced inflammation in macrophages, and notably, the combination treatment showed an even better suppression effect. Importantly, the in vivo study revealed that the combination therapy consisting of EVs and 7A in an alginate hydrogel was more efficient for the healing of diabetic wounds in rats than monotherapy using either EV or 7A hydrogels. The underlying mechanisms include suppression of inflammation, improvement of skin cell proliferation and migration, and enhanced collagen fiber disposition and angiogenesis in wounds. In summary, the MSC-EV-7A hydrogel potentially constitutes a novel therapy for efficient healing of chronic diabetic wounds.


Assuntos
Diabetes Mellitus , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Hidrogéis/química , Angiogênese , Cicatrização , Inflamação
15.
Sleep ; 47(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38181205

RESUMO

STUDY OBJECTIVES: Rapid eye movement sleep behavior disorder (RBD) is strongly associated with phenoconversion to an overt synucleinopathy, e.g. Parkinson's disease (PD), Lewy body dementia, and related disorders. Comorbid traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD)-henceforth "neurotrauma" (NT)-increase the odds of RBD by ~2.5-fold and are associated with an increased rate of service-connected PD in Veterans. Thus, RBD and NT are both independently associated with PD; however, it is unclear how NT influences neurological function in patients with RBD. METHODS: Participants ≥18 years with overnight polysomnogram-confirmed RBD were enrolled between 8/2018 to 4/2021 through the North American Prodromal Synucleinopathy Consortium. Standardized assessments for RBD, TBI, and PTSD history, as well as cognitive, motor, sensory, and autonomic function, were completed. This cross-sectional analysis compared cases (n = 24; RBD + NT) to controls (n = 96; RBD), matched for age (~60 years), sex (15% female), and years of education (~15 years). RESULTS: RBD + NT reported earlier RBD symptom onset (37.5 ±â€…11.9 vs. 52.2 ±â€…15.1 years of age) and a more severe RBD phenotype. Similarly, RBD + NT reported more severe anxiety and depression, greater frequency of hypertension, and significantly worse cognitive, motor, and autonomic function compared to RBD. No differences in olfaction or color vision were observed. CONCLUSIONS: This cross-sectional, matched case:control study shows individuals with RBD + NT have significantly worse neurological measures related to common features of an overt synucleinopathy. Confirmatory longitudinal studies are ongoing; however, these results suggest RBD + NT may be associated with more advanced neurological symptoms related to an evolving neurodegenerative process.


Assuntos
Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/epidemiologia , Transtorno do Comportamento do Sono REM/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Idoso , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Sinucleinopatias/fisiopatologia , Sinucleinopatias/epidemiologia , Sinucleinopatias/complicações , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Sintomas Prodrômicos , Polissonografia , Comorbidade , Doenças do Sistema Nervoso Autônomo/epidemiologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Doença de Parkinson/epidemiologia
16.
ACS Omega ; 9(1): 520-537, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38222546

RESUMO

The WuMa River (WMR) watershed is located in Renhuai City, Guizhou Province of China, which is a first-class tributary of the Chishui River. The geochemical investigation mainly included the determination of groundwater pH, total hardness, total dissolution solid, major cationic and anionic, and the geochemical groundwater modeling. The principal component analysis (PCA) and Gibbs model were used to analyze the pollution type and geochemical composition. The geochemical investigation results show that the cations of groundwater are dominated by Ca2+ and the anions are dominated by HCO3-; therefore, two main hydrochemical types in the study area are identified as Ca2+-Mg2+-HCO3- and Ca2+-Mg2+-SO42-. The chemical composition of groundwater in this area is mainly controlled by weathering of the carbonate rocks. The ion concentration of groundwater in the study area exhibited significant spatial variability between dry and wet seasons, while temporal changes of cationic and anionic concentrations exhibited irregularities. In PCA and FA analysis, PC1, PC2, and PC3 were extracted, which could explain 51.92, 26.98, and 12.61% of the total information, respectively. F1 explained 67.44% of the total variance, among which Ca2+, Mg2+, K+, SO42-, and Cl- contributed the most among the factors and were the main factors controlling the chemical composition of groundwater. The relative error between the measured water level and the simulated water level is less than 2%, which meets the requirements of simulation accuracy. During the simulation period of the model, a total recharge of 339.05 × 104 m3 was observed in the simulated area, primarily attributed to infiltration from rainfall. The total excretion amounted to 330.78 × 104 m3, primarily through evaporation, with a minor amount of lateral outflow. The migration pathway of pollutants in groundwater primarily follows the direction of groundwater flow while diffusing vertically. The migration range of the pollutant is in accordance with the direction of groundwater flow and extends along the larger hydraulic gradient, demonstrating consistency. The findings of this study serve as a reminder that the closure of coal mines can constitute a significant source of water pollution. Simultaneously, they offer empirical data and theoretical references for the simulation and prediction of groundwater contamination in enclosed coal mines.

17.
Small ; 20(15): e2307373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38012527

RESUMO

Surface defects in tin-based perovskite films disrupt the periodic arrangement of atoms in crystals, making surface atoms more susceptible to interactions with water and oxygen molecules in the surrounding environment. The diffusion of oxygen ions into the perovskite interior leads to the formation of severe bulk defects, which compromises the performance of tin-based perovskite solar cells (PSCs). As a result, surface defects are recognized as the primary source of degradation and require special attention. In this study, α-Tocopherol (also known as vitamin E) into tin-based perovskite films is introduced. Experimental results show that because of its larger volume, α-Tocopherol does not enter the perovskite lattice. Instead, it forms van der Waals and hydrogen bond interactions with the formamidine ion (FA+) and the [SnI6]4- octahedron at the perovskite terminals. Through α-Tocopherol passivation, both surface and interior oxidation of the perovskite are significantly suppressed as α-Tocopherol firmly embeds itself on the perovskite surface. Density functional theory analysis confirms the inhibition of I─Sn antisite defects (ISn) and Sn interstitial defects (Sni), which possess deep trap states within the bandgap. Ultimately, it is demonstrated that α-Tocopherol enhances the power conversion efficiency (PCE) from 9.19% to 13.14% and prolongs the lifetime of tin-based PSCs to over 50 days.

18.
Small ; 20(6): e2306115, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775951

RESUMO

The unsatisfactory power conversion efficiency (PCE) and long-term stability of tin perovskite solar cells (TPSCs) restrict its further development as alternatives to lead perovskite solar cells (LPSCs). Considerable research has focused on the negative impacts of O2 and H2 O, while discussions about degradation mechanism in an inert atmosphere remains insufficient. Herein, the light-induced autoxidation of tin perovskite in nitrogen atmosphere is revealed for the first time and the elastic lattice distortion is demonstrated as the crucial role of rapid degradation. The continuous injection of photons induces energy transfer from excited A-site cations to vibrating Sn-I framework, leading to the elastic deformation of perovskite lattice. Consequently, the over distorted Sn-I framework releases free iodine and further oxidizes Sn2+ in the form of molecular iodine. Through an appropriately designed light-dark cyclic test, a remarkable PCE of 14.41% is achieved based on (Cs0.025 (MA0.25 FA0.75 )0.975 ) 0.98 EDA0.01 SnI3 solar cells, which is the record of hybrid triple TPSCs so far. The findings unveil autoxidation as the crux of TPSCs' degradation in an inert atmosphere and suggest the possibility of reinforcing the tin perovskite lattice towards highly efficient and stable TPSCs.

19.
Brain ; 147(3): 887-899, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804111

RESUMO

There are 78 loci associated with Parkinson's disease in the most recent genome-wide association study (GWAS), yet the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate gene from each Parkinson's disease locus and identify variants and pathways potentially involved in Parkinson's disease. We trained a machine learning model to predict Parkinson's disease-associated genes from GWAS loci using genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candidate genes in each locus and identified novel pathways potentially involved in Parkinson's disease, such as the inositol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved in Parkinson's disease, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional studies are needed to further analyse the involvements of these genes and pathways in Parkinson's disease.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Fosfatos de Inositol , Neurônios Dopaminérgicos , Aprendizado de Máquina , Fosfotransferases (Aceptor do Grupo Fosfato)
20.
Int J Biol Macromol ; 256(Pt 1): 127963, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951424

RESUMO

In the food industry, there is a growing demand for bigels that offer both adaptable oral sensations and versatile delivery properties. Herein, we developed bigels using a binary hydrogel of konjac glucomannan (KGM) and gelatin (G) combined with a stearic acid oleogel. We closely examined how the oleogel/hydrogel volume ratio (φ) and the KGM/G mass ratio (γ) influenced various characteristics of the bigels, including their microstructure, texture, rheological properties, thermal-sensitivity, oral tribology, digestive stability, and nutraceutical delivery efficiency. A noteworthy observation was the structural evolution of the bigels with increasing φ values: transitioning from oleogel-in-hydrogel to a bicontinuous structure, and eventually to hydrogel-in-oleogel. Lower γ values yielded a softer, thermally-responsive bigel, whereas higher γ values imparted enhanced viscosity, stickiness, and spreadability to the bigel. Oral tribology assessments demonstrated that φ primarily influenced the friction sensations at lower chewing intensities. In contrast, γ played a significant role in augmenting oral friction perceptions during more intense chewing. Additionally, φ dictated the controlled release and bioaccessibility of curcumin, while γ determined digestive stability. This study provides valuable insights, emphasizing that through meticulous selection and adjustment of the hydrogel matrix composition, bigels can be custom-fabricated to achieve specific oral sensations and regulated digestive behaviors.


Assuntos
Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/química , Mananas/química , Compostos Orgânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...