Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 636
Filtrar
1.
Nutrients ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999758

RESUMO

Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.


Assuntos
Cobre , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos , Cobre/sangue , Fígado/metabolismo , Metabolismo dos Lipídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Probióticos/administração & dosagem , Probióticos/farmacologia , Metabolômica , Lactobacillus plantarum , Lipidômica , Multiômica
2.
Front Plant Sci ; 15: 1401050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974980

RESUMO

Introduction: Drought stress usually inhibits plant growth, which may increase the difficulty of greening slopes. Methods: In this study, we systematically investigated the effects of arbuscular mycorrhizal (AM) fungi on the growth and drought tolerance of two plant species, Festuca elata and Cassia glauca, in a vegetation concrete environment by exogenously inoculating AM fungi and setting three drought levels: well water, moderate drought and severe drought. The results showed that plant growth was significantly inhibited under drought stress; however, AM fungi inoculation significantly promoted plant height, root length, and above- and belowground biomass in these two plant species. Results: Compared with, those in the CK treatment, the greatest increases in the net photosynthesis rate, stomatal conductance and transpiration rate in the AM treatment group were 36.72%, 210.08%, and 66.41%, respectively. Moreover, inoculation with AM fungi increased plant superoxide dismutase and catalase activities by 4.70-150.73% and 9.10-95.70%, respectively, and reduced leaf malondialdehyde content by 2.79-55.01%, which alleviated the damage caused by oxidative stress. These effects alleviated the damage caused by oxidative stress and increased the content of soluble sugars and soluble proteins in plant leaves by 1.52-65.44% and 4.67-97.54%, respectively, which further increased the drought adaptability of plants. However, inoculation with AM fungi had different effects on different plants. Conclusion: In summary, this study demonstrated that the inoculation of AM fungi in vegetation concrete environments can significantly increase plant growth and drought tolerance. The plants that formed a symbiotic structure with AM fungi had a larger root uptake area, greater water uptake capacity, and greater photosynthesis and gas exchange efficiency. In addition, AM fungi inoculation further increased the drought adaptability of the plants by increasing their antioxidant enzyme activity and regulating their metabolite content. These findings are highly important for promoting plant growth and increasing drought tolerance under drought conditions, especially for potential practical applications in areas such as slope protection, and provide useful references for future ecological engineering and sustainable development.

3.
Anal Chem ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989558

RESUMO

Heparan sulfate (HS) meshes within the glycocalyx on cell surfaces have protein recognition ability and have been crucial for gaining insights into vital bioprocesses, such as viral infection, cancer development, and inflammation. The protein recognition ability is determined by the mesh property and compositions of HS, although little attention has been paid to the effect of the mesh property on the recognition. An in-depth specificity study of protein-HS-mesh recognition is essential to illustrate related biological functions. Here, ordered porous layer interferometry is applied to study the interaction behavior between mimicked HS meshes and lactoferrin (LF). Our work aimed at mimicking HS meshes with heparin, a widely used substitute of HS, and analyzing the specific LF-heparin-mesh interaction mechanism by inhibiting the nonspecific interaction in a blended sample. We found that the counterion release-based electrostatic interaction is dominant in the specific LF-heparin-mesh recognition. Furthermore, we detail the contributions of nonspecific and specific interactions to the recognition. We illustrate that the concentrated charge distribution of the proteins appears to be primarily related to this robust, specific recognition.

4.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982157

RESUMO

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Assuntos
Biocatálise , Especificidade por Substrato , Cinética , Aldeídos/metabolismo , Aldeídos/química , Catálise , Mutação , Alcenos/metabolismo , Alcenos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Engenharia de Proteínas
5.
BMC Psychiatry ; 24(1): 479, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951775

RESUMO

BACKGROUND: Increasing evidence suggests that leptin is involved in the pathology of autism spectrum disorder (ASD). In this study, our objective was to investigate the levels of leptin in the blood of children with ASD and to examine the overall profile of adipokine markers in ASD through meta-analysis. METHODS: Leptin concentrations were measured using an enzyme-linked immunosorbent assay (ELISA) kit, while adipokine profiling, including leptin, was performed via meta-analysis. Original reports that included measurements of peripheral adipokines in ASD patients and healthy controls (HCs) were collected from databases such as Web of Science, PubMed, and Cochrane Library. These studies were collected from September 2022 to September 2023 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Standardized mean differences were calculated using a random effects model for the meta-analysis. Additionally, we performed meta-regression and explored heterogeneity among studies. RESULTS: Our findings revealed a significant increase in leptin levels in children with ASD compared to HCs (p = 0.0319). This result was consistent with the findings obtained from the meta-analysis (p < 0.001). Furthermore, progranulin concentrations were significantly reduced in children with ASD. However, for the other five adipokines analyzed, there were no significant differences observed between the children with ASD and HCs children. Heterogeneity was found among the studies, and the meta-regression analysis indicated that publication year and latitude might influence the results of the meta-analysis. CONCLUSIONS: These findings provide compelling evidence that leptin levels are increased in children with ASD compared to healthy controls, suggesting a potential mechanism involving adipokines, particularly leptin, in the pathogenesis of ASD. These results contribute to a better understanding of the pathology of ASD and provide new insights for future investigations.


Assuntos
Adipocinas , Transtorno do Espectro Autista , Leptina , Humanos , Transtorno do Espectro Autista/sangue , Leptina/sangue , Criança , Adipocinas/sangue , Biomarcadores/sangue
6.
BMC Psychiatry ; 24(1): 439, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867159

RESUMO

BACKGROUND: To analyze the economic benefits of paliperidone palmitate in the treatment of schizophrenia. METHODS: We collected 546 patients who met the diagnostic criteria for schizophrenia according to the 《International Statistical Classification of Diseases and Related Health Problems,10th》(ICD-10). We gathered general population data such as gender, age, marital status, and education level, then initiated treatment with paliperidone palmitate. Then Follow-up evaluations were conducted at 1, 3, 6, 9, and 12 months after the start of treatment to assess clinical efficacy, adverse reactions, and injection doses. We also collected information on the economic burden before and after 12 months of treatment, as well as the number of outpatient visits and hospitalizations in the past year to analyze economic benefits. RESULTS: The baseline patients totaled 546, with 239 still receiving treatment with paliperidone palmitate 12 months later. After 12 months of treatment, the number of outpatient visits per year increased compared to before (4 (2,10) vs. 12 (4,12), Z=-5.949, P < 0.001), while the number of hospitalizations decreased (1 (1,3) vs. 1 (1,2), Z = 5.625, P < 0.001). The inpatient costs in the direct medical expenses of patients after 12 months of treatment decreased compared to before (5000(2000,12000) vs. 3000 (1000,8050), P < 0.05), while there was no significant change in outpatient expenses and direct non-medical expenses (transportation, accommodation, meal, and family accompanying expenses, etc.) (P > 0.05); the indirect costs of patients after 12 months of treatment (lost productivity costs for patients and families, economic costs due to destructive behavior, costs of seeking non-medical assistance) decreased compared to before (300(150,600) vs. 150(100,200), P < 0.05). CONCLUSION: Palmatine palmitate reduces the number of hospitalizations for patients, as well as their direct and indirect economic burdens, and has good economic benefits.


Assuntos
Antipsicóticos , Palmitato de Paliperidona , Esquizofrenia , Humanos , Palmitato de Paliperidona/uso terapêutico , Palmitato de Paliperidona/economia , Palmitato de Paliperidona/administração & dosagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/economia , Masculino , Feminino , Antipsicóticos/economia , Antipsicóticos/uso terapêutico , Adulto , Pessoa de Meia-Idade , Hospitalização/economia , Hospitalização/estatística & dados numéricos , Estudos de Coortes , Efeitos Psicossociais da Doença , Resultado do Tratamento
7.
ACS Nano ; 18(24): 15991-16001, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829730

RESUMO

Phase heterogeneity of bromine-iodine (Br-I) mixed wide-bandgap (WBG) perovskites has detrimental effects on solar cell performance and stability. Here, we report a heterointerface anchoring strategy to homogenize the Br-I distribution and mitigate the segregation of Br-rich WBG-perovskite phases. We find that methoxy-substituted phenyl ethylammonium (x-MeOPEA+) ligands not only contribute to the crystal growth with vertical orientation but also promote halide homogenization and defect passivation near the buried perovskite/hole transport layer (HTL) interface as well as reduce trap-mediated recombination. Based on improvements in WBG-perovskite homogeneity and heterointerface contacts, NiOx-based opaque WBG-perovskite solar cells (WBG-PSCs) achieved impressive open-circuit voltage (Voc) and fill factor (FF) values of 1.22 V and 83%, respectively. Moreover, semitransparent WBG-PSCs exhibit a PCE of 18.5% (15.4% for the IZO front side) and a high FF of 80.7% (79.4% for the IZO front side) for a designated illumination area (da) of 0.12 cm2. Such a strategy further enables 24.3%-efficient two-terminal perovskite/silicon (double-polished) tandem solar cells (da of 1.159 cm2) with a high Voc of over 1.90 V. The tandem devices also show high operational stability over 1000 h during T90 lifetime measurements.

8.
Food Chem ; 457: 140165, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38936118

RESUMO

Para-hydroxybenzoic acid (PHBA) is extensively used as an additive in the food and cosmetics industries, significantly enhancing product shelf life and stability. While microbial fermentation offers an environment-friendly and sustainable method for producing PHBA, the titer and productivity are limited due to product toxicity and complex metabolic flux distributions. Here, we initially redesigned a L-phenylalanine-producing Escherichia coli by employing rational metabolic engineering strategies, resulting in the production of PHBA reached the highest reported level of 14.17 g/L. Subsequently, a novel accelerated evolution system was devised comprising deaminase, the alpha subunit of RNA polymerase, an uracil-DNA glycosylase inhibitor, and the PHBA-responsive promoter PyhcN. This system enabled us to obtain a mutant strain exhibiting a 47% increase in the half-inhibitory concentration (IC50) for PHBA within 15 days. Finally, the evolved strain achieved a production of 21.35 g/L PHBA in a 5-L fermenter, with a yield of 0.19 g/g glucose and a productivity rate of 0.44 g/L/h. This engineered strain emerges as a promising candidate for industrial production of PHBA through an eco-friendly approach.

9.
BMC Vet Res ; 20(1): 274, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918815

RESUMO

BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii.


Assuntos
Acinetobacter , Antibacterianos , Mastite Bovina , Leite , Animais , Bovinos , Mastite Bovina/microbiologia , Mastite Bovina/epidemiologia , Feminino , Acinetobacter/isolamento & purificação , Acinetobacter/genética , Acinetobacter/efeitos dos fármacos , Leite/microbiologia , China/epidemiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Infecções por Acinetobacter/veterinária , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética
10.
ACS Synth Biol ; 13(6): 1879-1892, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38847341

RESUMO

Aromatic d-amino acids (d-AAs) play a pivotal role as important chiral building blocks and key intermediates in fine chemical and drug synthesis. Meso-diaminopimelate dehydrogenase (DAPDH) serves as an excellent biocatalyst in the synthesis of d-AAs and their derivatives. However, its strict substrate specificity and the lack of efficient engineering methods have hindered its widespread application. Therefore, this study aims to elucidate the catalytic mechanism underlying DAPDH from Proteus vulgaris (PvDAPDH) through the examination of its crystallographic structure, computational simulations of potential energies and molecular dynamics simulations, and site-directed mutagenesis. Mechanism-guided computational design showed that the optimal mutant PvDAPDH-M3 increased specific activity and catalytic efficiency (kcat/Km) for aromatic keto acids up to 124-fold and 92.4-fold, respectively, compared to that of the wild type. Additionally, it expanded the substrate scope to 10 aromatic keto acid substrates. Finally, six high-value-added aromatic d-AAs and their derivatives were synthesized using a one-pot three-enzyme cascade reaction, exhibiting a good conversion rate ranging from 32 to 84% and excellent stereoselectivity (enantiomeric excess >99%). These findings provide a potential synthetic pathway for the green industrial production of aromatic d-AAs.


Assuntos
Aminoácido Oxirredutases , Aminoácidos Aromáticos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/química , Especificidade por Substrato , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteus vulgaris/enzimologia , Proteus vulgaris/genética , Biocatálise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
11.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1882-1894, 2024 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-38914498

RESUMO

1,4-cyclohexanedimethylamine (1,4-BAC) is an important monomer for bio-based materials, it finds wide applications in various fields including organic synthesis, medicine, chemical industry, and materials. At present, its synthesis primarily relies on chemical method, which suffer from issues such as expensive metal catalyst, harsh reaction conditions, and safety risks. Therefore, it is necessary to explore greener alternatives for its synthesis. In this study, a two-bacterium three-enzyme cascade conversion pathway was successfully developed to convert 1,4-cyclohexanedicarboxaldehyde to 1,4-cyclohexanedimethylamine. This pathway used Escherichia coli derived aminotransferase (EcTA), Saccharomyces cerevisiae derived glutamate dehydrogenase (ScGlu-DH), and Candida boidinii derived formate dehydrogenase (CbFDH). Through structure-guided protein engineering, a beneficial mutant, EcTAF91Y, was obtained, exhibiting a 2.2-fold increase in specific activity and a 1.9-fold increase in kcat/Km compared to that of the wild type. By constructing recombinant strains and optimizing reaction conditions, it was found that under the optimal conditions, a substrate concentration of 40 g/L could produce (27.4±0.9) g/L of the product, corresponding to a molar conversion rate of 67.5%±2.1%.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Escherichia coli/metabolismo , Escherichia coli/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Transaminases/metabolismo , Transaminases/genética , Engenharia de Proteínas , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Formiato Desidrogenases/metabolismo , Formiato Desidrogenases/genética , Candida/enzimologia , Candida/metabolismo , Cicloexilaminas/metabolismo
12.
ACS Synth Biol ; 13(6): 1621-1632, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758631

RESUMO

Microbial synthetic epigenetics offers significant opportunities for the design of synthetic biology tools by leveraging reversible gene control mechanisms without altering DNA sequences. However, limited understanding and a lack of technologies for thorough analysis of the mechanisms behind epigenetic modifications have hampered their utilization in biotechnological applications. In this review, we explore advancements in developing epigenetic-based synthetic gene regulatory tools at both transcriptional and post-transcriptional levels. Furthermore, we examine strategies developed to construct epigenetic-based circuits that provide controllable and stable gene regulation, aiming to boost the performance of microbial chassis cells. Finally, we discuss the current challenges and perspectives in the development of synthetic epigenetic tools.


Assuntos
Epigênese Genética , Biologia Sintética , Biologia Sintética/métodos , Epigênese Genética/genética , Bactérias/genética , Redes Reguladoras de Genes/genética , Biotecnologia/métodos
13.
Chembiochem ; 25(11): e202400142, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38742957

RESUMO

The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.


Assuntos
Butileno Glicóis , Escherichia coli , Ácido Succínico , Butileno Glicóis/metabolismo , Butileno Glicóis/química , Ácido Succínico/metabolismo , Ácido Succínico/química , Escherichia coli/metabolismo , Escherichia coli/genética , Biocatálise , Álcool Desidrogenase/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Fermentação
14.
ACS Synth Biol ; 13(6): 1820-1830, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38767944

RESUMO

Cadaverine is a critical C5 monomer for the production of polyamides. Pyridoxal 5'-phosphate (PLP), as a crucial cofactor for the key enzyme lysine decarboxylase in the cadaverine biosynthesis pathway, has seen a persistent shortage, leading to limitations in cadaverine production. To address this issue, a dual-pathway strategy was implemented, synergistically enhancing both endogenous and heterologous PLP synthesis modules and resulting in improved PLP synthesis. Subsequently, a growth-stage-dependent molecular switch was introduced to balance the precursor competition between PLP synthesis and cell growth. Additionally, a PLP sensor-based negative feedback circuit was constructed by integrating a newly identified PLP-responsive promoter PygjH and an arabinose-regulated system, dynamically regulating the expression of the PLP synthetic genes and preventing excessive intracellular PLP accumulation. The optimal strain, L18, cultivated in the minimal medium AM1, demonstrated cadaverine production with a titer, yield, and productivity of 64.03 g/L, 0.23 g/g glucose, and 1.33 g/L/h, respectively. This represents the highest titer reported to date in engineered Escherichia coli by fed-batch fermentation in a minimal medium.


Assuntos
Cadaverina , Meios de Cultura , Escherichia coli , Engenharia Metabólica , Fosfato de Piridoxal , Cadaverina/metabolismo , Cadaverina/biossíntese , Fosfato de Piridoxal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Meios de Cultura/química , Regiões Promotoras Genéticas , Carboxiliases/genética , Carboxiliases/metabolismo
15.
Angew Chem Int Ed Engl ; : e202406060, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789390

RESUMO

The hydroxylation of remote C(sp3)-H bonds in aliphatic amino acids yields crucial precursors for the synthesis of high-value compounds. However, accurate regulation of the regioselectivity of remote C(sp3)-H bonds hydroxylation in aliphatic amino acids continues to be a common challenge in chemosynthesis and biosynthesis. In this study, the Fe(II)/α-ketoglutarate-dependent dioxygenase from Bacillus subtilis (BlAH) was mined and found to catalyze hydroxylation at the γ and δ sites of aliphatic amino acids. Crystal structure analysis, molecular dynamics simulations, and quantum chemical calculations revealed that regioselectivity was regulated by the spatial effect of BlAH. Based on these results, the spatial effect of BlAH was reconstructed to stabilize the transition state at the δ site of aliphatic amino acids, thereby successfully reversing the γ site regioselectivity to the δ site. For example, the regioselectivity of L-Homoleucine (5 a) was reversed from the γ site (1 : 12) to the δ site (>99 : 1). The present study not only expands the toolbox of biocatalysts for the regioselective functionalization of remote C(sp3)-H bonds, but also provides a theoretical guidance for the precision-driven modification of similarly remote C(sp3)-H bonds in complex molecules.

16.
Ambio ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727941

RESUMO

Considering both ecological and social dimensions in the assessment of ecosystem services (ESs) can facilitate acceptable and inclusive management strategies, especially in peri-urban areas characterized by intricate human-ecosystem interactions. A limited body of research, however, has mapped the plural values of ESs and their different types of trade-offs in such areas. This research aimed to execute an interdisciplinary analysis of the biophysical and social values of ESs in peri-urban Shanghai, China, through a social-ecological approach that integrates spatial biophysical assessment with participatory mapping. Trade-off analysis in both ES types and ES valuations were then conducted, and multicriteria decision-making was applied for conservation. Our results reveal that trade-off intensities were lower within the social values compared to the biophysical values. Within both value dimensions, relatively stronger trade-offs were found between food production and other ESs. Areas with both high biophysical and social values were infrequently observed across ESs. Based on the characteristics of diverse values, our study identified priority conservation areas and provided management implications. We argue that adopting the integrated social-ecological perspective in sustainable environmental management contributes to the realization of harmonious coexistence between people and nature in peri-urban areas.

17.
J Agric Food Chem ; 72(19): 11029-11040, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699920

RESUMO

l-Phenylalanine (l-Phe) is widely used in the food and pharmaceutical industries. However, the biosynthesis of l-Phe using Escherichia coli remains challenging due to its lower tolerance to high concentration of l-Phe. In this study, to efficiently synthesize l-Phe, the l-Phe biosynthetic pathway was reconstructed by expressing the heterologous genes aroK1, aroL1, and pheA1, along with the native genes aroA, aroC, and tyrB in the shikimate-producing strain E. coli SA09, resulting in the engineered strain E. coli PHE03. Subsequently, adaptive evolution was conducted on E. coli PHE03 to enhance its tolerance to high concentrations of l-Phe, resulting in the strain E. coli PHE04, which reduced the cell mortality to 36.2% after 48 h of fermentation. To elucidate the potential mechanisms, transcriptional profiling was conducted, revealing MarA, a DNA-binding transcriptional dual regulator, as playing a crucial role in enhancing cell membrane integrity and fluidity for improving cell tolerance to high concentrations of l-Phe. Finally, the titer, yield, and productivity of l-Phe with E. coli PHE05 overexpressing marA were increased to 80.48 g/L, 0.27 g/g glucose, and 1.68 g/L/h in a 5-L fed-batch fermentation, respectively.


Assuntos
Escherichia coli , Fermentação , Engenharia Metabólica , Fenilalanina , Escherichia coli/genética , Escherichia coli/metabolismo , Fenilalanina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vias Biossintéticas
18.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38714361

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Arabidopsis , Desenho de Fármacos , Inibidores Enzimáticos , Herbicidas , Simulação de Acoplamento Molecular , Herbicidas/química , Herbicidas/farmacologia , Herbicidas/síntese química , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , 4-Hidroxifenilpiruvato Dioxigenase/química , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Relação Estrutura-Atividade , Estrutura Molecular , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Cicloexanonas/química , Cicloexanonas/farmacologia , Cicloexanonas/síntese química , Triticum/química , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
19.
Bioresour Technol ; 402: 130803, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734263

RESUMO

An ionic liquid (IL, [DMAPA]HSO4) was prepared to facilitate the removal of heavy metals by hydrothermal carbonization (HTC) in sewage sludge (SS) and to obtain a positive energy recovery (ER, (Energyoutput/Energyinput - 1) > 0). The results found that the removal efficiencies of the Fe, Mn, Zn, Co, and Cd from SS exceeded 75 % with positive ER (6 %) at 20 wt% IL dosage (IL:SS). IL promoted the HTC reactions of proteins and polysaccharides to produce fixed carbon and small molecule polymers. The process mainly relies on IL to catalyze the dehydration and graphitization of SS and to destroy the heavy metal binding sites such as carboxyl and hydroxyl groups. Additionally, IL aids in constructing the macropore structures in hydrochar, thereby facilitating the release of heavy metals and water during the HTC process. This discovery holds promise for removing heavy metals from SS by one-pot HTC processes with positive energy recovery.


Assuntos
Líquidos Iônicos , Metais Pesados , Esgotos , Metais Pesados/química , Esgotos/química , Líquidos Iônicos/química , Catálise , Carbono/química , Carvão Vegetal/química , Poluentes Químicos da Água , Temperatura , Purificação da Água/métodos , Temperatura Baixa
20.
Enzyme Microb Technol ; 178: 110448, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657401

RESUMO

D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.


Assuntos
Carboidratos Epimerases , Estabilidade Enzimática , Hexoses , Hexoses/metabolismo , Carboidratos Epimerases/genética , Carboidratos Epimerases/metabolismo , Carboidratos Epimerases/química , Simulação de Dinâmica Molecular , Frutose/metabolismo , Cinética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Especificidade por Substrato , Engenharia de Proteínas , Racemases e Epimerases/metabolismo , Racemases e Epimerases/genética , Racemases e Epimerases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...