Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604013

RESUMO

Rhizosphere interactions from plant-soil-microbiome occur dynamically all the time in the "black microzone" underground, where we can't see intuitively. Rhizosphere metabolites including root exudates and microbial metabolites act as various chemical signalings involving in rhizosphere interactions, and play vital roles on plant growth, development, disease suppression and resistance to stress conditions as well as proper soil health. Although rhizosphere metabolites are a mixture from plant roots and soil microbes, they often are discussed alone. As a rapid appearance of various omics platforms and analytical methods, it offers possibilities and opportunities for exploring rhizosphere interactions in unprecedented breadth and depth. However, our comprehensive understanding about the fine-tuning mechanisms of rhizosphere interactions mediated by these chemical compounds still remain clear. Thus, this review summarizes recent advances systemically including the features of rhizosphere metabolites and their effects on rhizosphere ecosystem, and looks forward to the future research perspectives, which contributes to facilitating better understanding of biochemical communications belowground and helping identify novel rhizosphere metabolites. We also address challenges for promoting the understanding about the roles of rhizosphere metabolites in different environmental stresses.


Assuntos
Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Agricultura/métodos , Microbiota/fisiologia , Plantas/metabolismo , Plantas/microbiologia
2.
Bioresour Technol ; 399: 130566, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467262

RESUMO

The low-cost carbon source, acetate, was utilized to feed a linoleic acid-rich Chlorella sorokiniana for microalgal biomass and lipid accumulation. Remarkably high tolerance capability to high acetate dosage up to 30 g/L was observed, with heterotrophy being the preferred trophic mode for algal growth and lipogenesis when supplemented 20 g/L acetate. Transcriptome analysis revealed a marked activation of pathways involved in acetate bioconversion and lipogenesis upon exposure to high-level of acetate. However, the enhancement of photorespiration inhibited photosynthesis, which ultimately led to a decrease in biomass and lipid under mixotrophy. Heterotrophic acetate-feeding generated more superior amino acid profiling of algal biomass and a predominant linoleic acid content (50 %). Heterotrophic repeat fed-batch strategy in 5 L fermenter significantly increased the growth performance and lipid titer, with the highest levels achieved being 23.4 g/L and 7.0 g/L, respectively. This work provides a viable approach for bio-products production through acetate-based heterotrophic algal cultivation.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Ácido Linoleico/metabolismo , Microalgas/metabolismo , Processos Heterotróficos , Biomassa , Acetatos
3.
Bioresour Technol ; 396: 130420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336213

RESUMO

An integrated process for the co-production of cellulosic ethanol and microalgal biomass by fixing CO2 generated from bioethanol fermentation is proposed. Specifically, over one-fifth of the fermentative carbon was converted into high-purity CO2 during ethanol production. The optimal concentration of 4 % CO2 was identified for the growth and metabolism of Chlorella sp. BWY-1. A multiple short-term intermittent CO2 supply system was established to efficiently fix and recycle the waste CO2. Using this system, economical co-production of cellulosic ethanol by Zymomonas mobilis and microalgal biomass in biogas slurry wastewater was achieved, resulting in the production of ethanol at a rate of 0.4 g/L/h and a fixed fermentation CO2 of 3.1 g/L/d. Moreover, the amounts of algal biomass and chlorophyll a increased by over 50 % and two-fold, respectively. Through techno-economic analysis, the integrated process demonstrated its cost-effectiveness for cellulosic ethanol production. This study presents an innovative approach to a low-carbon circular bioeconomy.


Assuntos
Chlorella , Microalgas , Fermentação , Dióxido de Carbono/metabolismo , Biomassa , Etanol/metabolismo , Microalgas/metabolismo , Chlorella/metabolismo , Clorofila A , Biocombustíveis
4.
Sci Total Environ ; 893: 164795, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321491

RESUMO

Resource recovery from waste streams and C1 gaseous substrates (CO2, CO and CH4) are of extensive interest due to the insufficient utilization and threats to the environment. From a perspective of sustainability, valorization of waste streams and C1 gases into target energy-rich value-added products in a sustainable way offers tempting approaches for simultaneously alleviating the environmental problems and achieving a circular carbon economy, while it still suffers from the complicated compositions of feedstocks or the low solubility of gaseous feeds. Recently, a C2 feedstock-based biomanufacturing serving acetate as potential next-generation platform has received much attention, where different gaseous or cellulosic wastes are recycling into acetate and then be further processed into a wide range of valuable long-chain compounds. The different alternative waste-processing technologies that are being developed to generate acetate from various wastes or gaseous substrates are summarized, in which gas fermentation and electrochemical reduction from CO2 represent the most promising routes for achieving high acetate yield. The recent advances and innovations in metabolic engineering for acetate bioconversion into various bioproducts ranging from food nutrients to value-added compounds were then highlighted. The challenges and promising strategies to reinforce microbial acetate conversion were also proposed, which conferred a new horizon for future food and chemical manufacturing with reduced carbon footprint.


Assuntos
Dióxido de Carbono , Gases , Alimentos , Acetatos , Nutrientes
5.
Crit Rev Food Sci Nutr ; : 1-21, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36345974

RESUMO

Zymomonas mobilis is a gram-negative facultative anaerobic spore, which is generally recognized as a safe. As a promising ethanologenic organism for large-scale bio-ethanol production, Z. mobilis has also shown a good application prospect in food processing and food additive synthesis for its unique physiological characteristics and excellent industrial characteristics. It not only has obvious advantages in food processing and becomes the biorefinery chassis cell for food additives, but also has a certain healthcare effect on human health. Until to now, most of the research is still in theory and laboratory scale, and further research is also needed to achieve industrial production. This review summarized the physiological characteristics and advantages of Z. mobilis in food industry for the first time and further expounds its research status in food industry from three aspects of food additive synthesis, fermentation applications, and prebiotic efficacy, it will provide a theoretical basis for its development and applications in food industry. This review also discussed the shortcomings of its practical applications in the current food industry, and explored other ways to broaden the applications of Z. mobilis in the food industry, to promote its applications in food processing.


Potential applications of Zymomonas mobilis in food industry summarized for the first time.Research status of Z. mobilis in food additive synthesis, fermentation applications, and probiotics are discussed in details.Future research perspectives of Z. mobilis in food industry further proposed.

6.
Bioresour Technol ; 364: 128139, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252765

RESUMO

Microbial biomass and lipid production with mixed-culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source was investigated. Synergistic effect of mixed-culture using 20 g/L acetate significantly promoted cell growth and acetate utilization efficiency. Increasing the proportion of algae in co-culture was beneficial for biomass and lipid accumulation and the optimal ratio of yeast/algae was 1:2. Light exposure further enhanced biomass and lipid titer with 6.9 g/L biomass and 2.6 g/L lipid (38.3 % lipid content) obtained in a 5L bioreactor. The results of lipid classes and fatty acid profiles moreover indicated that more neutral lipids and linolenic acid were synthesized in mixed-culture under light exposure condition, suggesting the great potential in applications of biofuels production. This study provided new insight and strategy for economical microbial biomass and lipid production by light-exposed mixed-culture using inexpensive acetate as carbon source.

7.
J Agric Food Chem ; 69(47): 14151-14164, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806371

RESUMO

Glucosinolates (GSLs), secondary metabolites synthesized by cruciferous plants, can be hydrolyzed by myrosinase into compounds, such as isothiocyanates (ITCs), with various bioactivities. Thus, myrosinase plays an important role in the utilization of GSLs. We isolated a bacterial strain, which was identified as Leclercia adecarboxylata, from the rhizosphere soil of rape seedlings and identified two myrosinase genes and an ITC hydrolase gene. Both myrosinases are intracellular and have 658 amino acid residues. Via molecular docking and chemical modification assays investigating the active sites of the myrosinases, arginine was found to be essential for their catalytic activity. Transcriptomic analysis of the response to sinigrin revealed significant up-regulation of some genes involved in allyl-ITC detoxification, with metallo-ß-lactamase 3836 having the highest fold change. Thus, we discovered two myrosinases from L. adecarboxylata and demonstrated that the mechanism of tolerance of the bacterium to allyl-ITC likely involved metallo-ß-lactamase activity.


Assuntos
Enterobacteriaceae/enzimologia , Glucosinolatos , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Isotiocianatos , Simulação de Acoplamento Molecular
8.
Plant Biotechnol J ; 19(3): 517-531, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32946650

RESUMO

The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.


Assuntos
Ziziphus , China , Frutas/genética , Estudo de Associação Genômica Ampla , Genômica , Ziziphus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...