Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Lung Cancer Res ; 13(6): 1277-1295, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38973963

RESUMO

Background: Immune therapy has become first-line treatment option for patients with lung cancer, but some patients respond poorly to immune therapy, especially among patients with lung adenocarcinoma (LUAD). Novel tools are needed to screen potential responders to immune therapy in LUAD patients, to better predict the prognosis and guide clinical decision-making. Although many efforts have been made to predict the responsiveness of LUAD patients, the results were limited. During the era of immunotherapy, this study attempts to construct a novel prognostic model for LUAD by utilizing differentially expressed genes (DEGs) among patients with differential immune therapy responses. Methods: Transcriptome data of 598 patients with LUAD were downloaded from The Cancer Genome Atlas (TCGA) database, which included 539 tumor samples and 59 normal control samples, with a mean follow-up time of 29.69 months (63.1% of patients remained alive by the end of follow-up). Other data sources including three datasets from the Gene Expression Omnibus (GEO) database were analyzed, and the DEGs between immunotherapy responders and nonresponders were identified and screened. Univariate Cox regression analysis was applied with the TCGA cohort as the training set and GSE72094 cohort as the validation set, and least absolute shrinkage and selection operator (LASSO) Cox regression were applied in the prognostic-related genes which fulfilled the filter criteria to establish a prognostic formula, which was then tested with time-dependent receiver operating characteristic (ROC) analysis. Enriched pathways of the prognostic-related genes were analyzed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and tumor immune microenvironment (TIME), tumor mutational burden, and drug sensitivity tests were completed with appropriate packages in R (The R Foundation of Statistical Computing). Finally, a nomogram incorporating the prognostic formula was established. Results: A total of 1,636 DEGs were identified, 1,163 prognostic-related DEGs were extracted, and 34 DEGs were selected and incorporated into the immunotherapy responsiveness-related risk score (IRRS) formula. The IRRS formula had good performance in predicting the overall prognoses in patients with LUAD and had excellent performance in prognosis prediction in all LUAD subgroups. Moreover, the IRRS formula could predict anticancer drug sensitivity and immunotherapy responsiveness in patients with LUAD. Mechanistically, immune microenvironments varied profoundly between the two IRRS groups; the most significantly varied pathway between the high-IRRS and low-IRRS groups was ribonucleoprotein complex biogenesis, which correlated closely with the TP53 and TTN mutation burdens. In addition, we established a nomogram incorporating the IRRS, age, sex, clinical stage, T-stage, N-stage, and M-stage as predictors that could predict the prognoses of 1-year, 3-year, and 5-year survival in patients with LUAD, with an area under curve (AUC) of 0.718, 0.702, and 0.68, respectively. Conclusions: The model we established in the present study could predict the prognosis of LUAD patients, help to identify patients with good responses to anticancer drugs and immunotherapy, and serve as a valuable tool to guide clinical decision-making.

2.
Ann Dermatol ; 36(3): 151-162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816976

RESUMO

BACKGROUND: Although reports suggest that tranexamic acid (TXA) has clinical benefits for melasma patients by oral, intralesional and topical treatment, the optimal route of TXA therapy and the underlying mechanism involved remain poorly defined. OBJECTIVE: To compare the skin lightening effect between oral TXA and topical TXA and to dissect the molecular mechanisms using ultraviolet B (UVB)-induced hyperpigmentation mouse model, ex vivo cultured human skin explant, and cultured melanocytes (MCs) and endothelial cells. METHODS: Melanin content and cluster of differentiation 31 (CD31)-positive cell numbers were measured in tail skins from UVB-irradiated mice treated by intragastral or topical TXA using immunofluorescent and Fontana-Masson staining. The conditioned medium (CM) was harvested from human umbilical vein endothelial cells treated with or without 3 mM TXA and was used to treat MCs for 48 hours. mRNA and protein levels of tyrosinase and microphthalmia-associated transcription factor were measured using quantitative real-time reverse transcription polymerase chain reaction and western blotting assays. HMB45- and CD31-positive cell numbers as well as melanin content were also examined in ex vivo cultured human skin explants. RESULTS: The hyperpigmented phenotype were significantly mitigated in UVB-irradiated tail skin plus intragastral TXA-treated mice compared with mice treated with UVB only or with UVB plus topical TXA. CD31-positive cell numbers correlated with the anti-melanogenic activity of TXA therapy. The data from cultured cells and skin tissues showed that suppression of endothelin-1 (ET-1) in vascular endothelial cells by TXA reduced melanogenesis and MC proliferation. CONCLUSION: Oral TXA outperforms topical TXA treatment in skin lightening, which contributes to suppression of ET-1 in dermal microvascular endothelial cells by TXA.

3.
Microorganisms ; 12(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38792763

RESUMO

Pyridoxine, also known as vitamin B6, is an essential cofactor in numerous cellular processes. Its importance in various applications has led to a growing interest in optimizing its production through microbial biosynthesis. However, an imbalance in the net production of NADH disrupts intracellular cofactor levels, thereby limiting the efficient synthesis of pyridoxine. In our study, we focused on multiple cofactor engineering strategies, including the enzyme design involved in NAD+-dependent enzymes and NAD+ regeneration through the introduction of heterologous NADH oxidase (Nox) coupled with the reduction in NADH production during glycolysis. Finally, the engineered E. coli achieved a pyridoxine titer of 676 mg/L in a shake flask within 48 h by enhancing the driving force. Overall, the multiple cofactor engineering strategies utilized in this study serve as a reference for enhancing the efficient biosynthesis of other target products.

4.
Microb Cell Fact ; 23(1): 137, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750497

RESUMO

BACKGROUND: Microbial engineering aims to enhance the ability of bacteria to produce valuable products, including vitamin B6 for various applications. Numerous microorganisms naturally produce vitamin B6, yet the metabolic pathways involved are rigorously controlled. This regulation by the accumulation of vitamin B6 poses a challenge in constructing an efficient cell factory. RESULTS: In this study, we conducted transcriptome and metabolome analyses to investigate the effects of the accumulation of pyridoxine, which is the major commercial form of vitamin B6, on cellular processes in Escherichia coli. Our omics analysis revealed associations between pyridoxine and amino acids, as well as the tricarboxylic acid (TCA) cycle. Based on these findings, we identified potential targets for fermentation optimization, including succinate, amino acids, and the carbon-to-nitrogen (C/N) ratio. Through targeted modifications, we achieved pyridoxine titers of approximately 514 mg/L in shake flasks and 1.95 g/L in fed-batch fermentation. CONCLUSION: Our results provide insights into pyridoxine biosynthesis within the cellular metabolic network for the first time. Our comprehensive analysis revealed that the fermentation process resulted in a remarkable final yield of 1.95 g/L pyridoxine, the highest reported yield to date. This work lays a foundation for the green industrial production of vitamin B6 in the future.


Assuntos
Escherichia coli , Fermentação , Piridoxina , Vitamina B 6 , Escherichia coli/metabolismo , Escherichia coli/genética , Vitamina B 6/metabolismo , Vitamina B 6/biossíntese , Piridoxina/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Transcriptoma , Ciclo do Ácido Cítrico , Metaboloma , Carbono/metabolismo , Metabolômica , Aminoácidos/metabolismo , Nitrogênio/metabolismo
5.
Synth Syst Biotechnol ; 9(2): 388-398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572022

RESUMO

Vitamin B6 plays a crucial role in cellular metabolism and stress response, making it an essential component for growth in all known organisms. However, achieving efficient biosynthesis of vitamin B6 faces the challenge of maintaining a balanced distribution of metabolic flux between growth and production. In this study, our focus is on addressing this challenge through the engineering of phosphoserine aminotransferase (SerC) to resolve its redundancy and promiscuity. The enzyme SerC was semi-designed and screened based on sequences and predicted kcat values, respectively. Mutants and heterologous proteins showing potential were then fine-tuned to optimize the production of vitamin B6. The resulting strain enhances the production of vitamin B6, indicating that different fluxes are distributed to the biosynthesis pathway of serine and vitamin B6. This study presents a promising strategy to address the challenge posed by multifunctional enzymes, with significant implications for enhancing biochemical production through engineering processes.

6.
Life Sci ; 333: 122148, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805166

RESUMO

AIMS: To investigate the role and mechanisms of methyltransferase-like 3 (METTL3) in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MAIN METHODS: LPS intratracheally instillation was applied in alveolar epithelial cell METTL3 conditional knockout (METTL3-CKO) mice and their wild-type littermates. In addition, METTL3 inhibitor STM2457 was used. LPS treatment on mouse lung epithelial 12 (MLE-12) cell was applied to establish an in vitro model of LPS-induced ALI. H&E staining, lung wet-to-dry ratio, and total broncho-alveolar lavage fluid (BALF) concentrations were used to evaluate lung injury. Overall, the m6A level was determined with the m6A RNA Methylation Quantification Kit and dot blot assay. Expression of METTL3 and neprilysin were measured with immunohistochemistry, immunofluorescence, immunofluorescence-fluorescence in situ hybridization, and western blot. Apoptosis was detected with TUNEL, western blot, and flow cytometry. The interaction of METTL3 and neprilysin was determined with RIP-qPCR and MeRIP. KEY FINDINGS: METTL3 expression and apoptosis were increased in alveolar epithelial cells of mice treated with LPS, and METTL3-CKO or METTL3 inhibitor STM2457 could alleviate apoptosis and LPS-induced ALI. In MLE-12 cells, LPS-Induced METTL3 expression and apoptosis. Knockdown of METTL3 alleviated, while overexpression of METTL3 exacerbated LPS-induced apoptosis. LPS treatment reduced neprilysin expression, the intervention of neprilysin expression negatively regulated apoptosis without affecting METTL3 expression, and mitigated the promoting effect of METTL3 on LPS-induced apoptosis. Additionally, METTL3 could bind to the mRNA of neprilysin, and reduce its expression. SIGNIFICANCE: Our findings revealed that inhibition of METTL3 could exert anti-apoptosis and ALI-protective effects via restoring neprilysin expression.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Animais , Camundongos , Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/metabolismo , Apoptose , Hibridização in Situ Fluorescente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Neprilisina
7.
Nat Commun ; 14(1): 5304, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652926

RESUMO

Vitamin B6 is an essential nutrient with extensive applications in the medicine, food, animal feed, and cosmetics industries. Pyridoxine (PN), the most common commercial form of vitamin B6, is currently chemically synthesized using expensive and toxic chemicals. However, the low catalytic efficiencies of natural enzymes and the tight regulation of the metabolic pathway have hindered PN production by the microbial fermentation process. Here, we report an engineered Escherichia coli strain for PN production. Parallel pathway engineering is performed to decouple PN production and cell growth. Further, protein engineering is rationally designed including the inefficient enzymes PdxA, PdxJ, and the initial enzymes Epd and Dxs. By the iterative multimodule optimization strategy, the final strain produces 1.4 g/L of PN with productivity of 29.16 mg/L/h by fed-batch fermentation. The strategies reported here will be useful for developing microbial strains for the production of vitamins and other bioproducts having inherently low metabolic fluxes.


Assuntos
Proteínas de Escherichia coli , Piridoxina , Animais , Vitamina B 6 , Vitaminas , Engenharia de Proteínas , Escherichia coli/genética , Ligases , Proteínas de Escherichia coli/genética
8.
Bioorg Chem ; 135: 106487, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996510

RESUMO

SIRT5 has been implicated in various physiological processes and human diseases, including cancer. Development of new highly potent, selective SIRT5 inhibitors is still needed to investigate disease-related mechanisms and therapeutic potentials. We here report new ε-N-thioglutaryllysine derivatives, which were designed according to SIRT5-catalysed deacylation reactions. These ε-N-thioglutaryllysine derivatives displayed potent SIRT5 inhibition, of which the potential photo-crosslinking derivative 8 manifested most potent inhibition with an IC50 value of 120 nM to SIRT5, and low inhibition to SIRT1-3 and SIRT6. The enzyme kinetic assays revealed that the ε-N-thioglutaryllysine derivatives inhibit SIRT5 by lysine-substrate competitive manner. Co-crystallographic analyses demonstrated that 8 binds to occupy the lysine-substate binding site by making hydrogen-bonding and electrostatic interactions with SIRT5-specific residues, and is likely positioned to react with NAD+ and form stable thio-intermediates. Compound 8 was observed to have low photo-crosslinking probability to SIRT5, possibly due to inappropriate position of the diazirine group as observed in SIRT5:8 crystal structure. This study provides useful information for developing drug-like inhibitors and cross-linking chemical probes for SIRT5-related studies.


Assuntos
Sirtuínas , Humanos , Sirtuínas/metabolismo , Lisina/química , Sítios de Ligação
9.
Front Bioeng Biotechnol ; 9: 661562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222212

RESUMO

Vitamins are a group of essential nutrients that are necessary to maintain normal metabolic activities and optimal health. There are wide applications of different vitamins in food, cosmetics, feed, medicine, and other areas. The increase in the global demand for vitamins has inspired great interest in novel production strategies. Chemical synthesis methods often require high temperatures or pressurized reactors and use non-renewable chemicals or toxic solvents that cause product safety concerns, pollution, and hazardous waste. Microbial cell factories for the production of vitamins are green and sustainable from both environmental and economic standpoints. In this review, we summarized the vitamins which can potentially be produced using microbial cell factories or are already being produced in commercial fermentation processes. They include water-soluble vitamins (vitamin B complex and vitamin C) as well as fat-soluble vitamins (vitamin A/D/E and vitamin K). Furthermore, metabolic engineering is discussed to provide a reference for the construction of microbial cell factories. We also highlight the current state and problems encountered in the fermentative production of vitamins.

10.
Sheng Wu Gong Cheng Xue Bao ; 37(5): 1748-1770, 2021 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-34085453

RESUMO

Vitamins are organic substances that are essential for the maintenance of life activities. Generally, vitamins need to be obtained from the diet or from some synthetic source as the body cannot synthesize vitamins, or the amounts of the synthesized vitamins are insufficient. At present, vitamins are widely used in medicine, food additives, feed additives, cosmetics and other fields, and the global demand for vitamins is constantly growing. Vitamins can be produced from chemical or microbial synthesis. Chemical synthesis usually requires harsh reaction conditions, produces serious wastes, and creates great potential safety hazard. In contrast, microbial synthesis of vitamins is greener, safer, and requires much less energy input. This review summarizes the advances in metabolic engineering for vitamins production in the past 30 years, with a focus on production of water-soluble vitamins (vitamins B1, B2, B3, B5, B6, B7, B9, B12 and vitamin C precursors) and lipid-soluble vitamins (vitamin A, precursors of vitamin D, vitamin E and vitamin K). Moreover, the bottlenecks for fermentative production of vitamins are discussed, and future perspectives for developing next generation vitamins producing strains using synthetic biotechnology are prospected.


Assuntos
Vitamina A , Vitaminas , Biotecnologia , Engenharia Metabólica , Vitamina K , Vitaminas/análise
11.
Front Genet ; 12: 648156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815482

RESUMO

S100 protein family members (S100s) are commonly dysregulated in various tumors including hepatocellular carcinoma (HCC). However, the diverse expression, mutation, prognosis and associations with immune infiltration of S100s in HCC have yet to be analyzed. Herein we investigated the roles of S100s in HCC from the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas, Kaplan-Meier Plotter, cBioPortal and TIMER databases. Compared with para-cancer tissues, the expression levels of S100A4/S100A6/S100A10/S100A11/S100A13/S100A14/S100P were higher in HCC tissues, while the expression levels of S100A8/S100A9/S100A12 were decreased in tumor tissues. The mRNA levels of S100A2/S100A7/S100A7A/S100A8/S100A9/S100A11 were correlated with advanced tumor stage. Besides, higher mRNA expressions of S100A6/S100A10/S100A11/S100A13/S100A14/S100P were shown to have shorter overall survival (OS), while higher expression of S100A12 was associated with favorable OS. Further, the mutation rate of S100s was investigated, and the high mutation rate (53%) was associated with shorter OS. Additionally, the expressions of S100s were found to be significantly associated with various immune infiltrating cells. Hence, our results showed that S100A6/S100A10/S100A11/S10012/S100A13/S100A14/S100P may be regarded as new prognostic or therapeutic markers and S100s inhibitors may be helpful in the combination of immunotherapies.

12.
Microb Cell Fact ; 20(1): 84, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849534

RESUMO

Vitamin K2 (menaquinone, MK) is an essential lipid-soluble vitamin with critical roles in blood coagulation and bone metabolism. Chemically, the term vitamin K2 encompasses a group of small molecules that contain a common naphthoquinone head group and a polyisoprenyl side chain of variable length. Among them, menaquinone-7 (MK-7) is the most potent form. Here, the biosynthetic pathways of vitamin K2 and different types of MK produced by microorganisms are briefly introduced. Further, we provide a new aspect of MK-7 production, which shares a common naphthoquinone ring and polyisoprene biosynthesis pathway, by analyzing strategies for expanding the product spectrum. We review the findings of metabolic engineering strategies targeting the shikimate pathway, polyisoprene pathway, and menaquinone pathway, as well as membrane engineering, which provide comprehensive insights for enhancing the yield of MK-7. Finally, the current limitations and perspectives of microbial menaquinone production are also discussed. This article provides in-depth information on metabolic engineering strategies for vitamin K2 production by expanding the product spectrum.


Assuntos
Bactérias/metabolismo , Engenharia Metabólica/métodos , Vitamina K 2/análogos & derivados , Fermentação , Vitamina K 2/metabolismo
13.
Sci China Life Sci ; 64(8): 1336-1345, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33165808

RESUMO

Cell cycle is a fundamental process underlying growth and development in evolutionarily diverse organisms, including fungi. In human fungal pathogens, cell cycle control generally determines their life cycles, either in the environment or during infections. Thus, cell cycle components can potentially serve as important targets for the development of antifungal strategy against fungal infections. Here, in Cryptococcus neoformans, the most common cause of fatal fungal meningitis, we show that a previously uncharacterized B-type cyclin named Cbc1 is essential for both its infectious and sexual cycles. We reveal that Cbc1 coordinates various sexual differentiation and molecular processes, including meiosis. Especially, the absence of Cbc1 abolishes formation of sexual spores in C. neoformans, which are presumed infectious particles. Cbc1 is also required for the major Cryptococcus pathogenic attributes. Virulence assessment using the murine model of cryptococcosis revealed that the cbc1 mutant is avirulent. Together, our results provide an important insight into how C. neoformans employs shared cell cycle regulation to coordinate its infectious and sexual cycles, which are considered crucial for virulence evolution and the production of infectious spores.


Assuntos
Cryptococcus neoformans/patogenicidade , Ciclinas/metabolismo , Genes Fúngicos Tipo Acasalamento/fisiologia , Estágios do Ciclo de Vida/fisiologia , Desenvolvimento Sexual/fisiologia , Virulência/fisiologia , Animais , Pontos de Checagem do Ciclo Celular , Meiose , Camundongos
14.
Synth Syst Biotechnol ; 5(3): 200-205, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32671235

RESUMO

Optimizing the supply of biosynthetic precursors and cofactors is usually an effective metabolic strategy to improve the production of target compounds. Here, the combination of optimizing precursor synthesis and balancing cofactor metabolism was adopted to improve tryptophan production in Escherichia coli. First, glutamine synthesis was improved by expressing heterologous glutamine synthetase from Bacillus subtilis and Bacillus megaterium in the engineered Escherichia coli strain KW001, resulting in the best candidate strain TS-1. Then icd and gdhA were overexpressed in TS-1, which led to the accumulation of 1.060 g/L tryptophan. Subsequently, one more copy of prs was introduced on the chromosome to increase the flux of 5-phospho-α-d-ribose 1-diphosphate followed by the expression of mutated serA and thrA to increase the precursor supply of serine, resulting in the accumulation of 1.380 g/L tryptophan. Finally, to maintain cofactor balance, sthA and pntAB, encoding transhydrogenase, were overexpressed. With sufficient amounts of precursors and balanced cofactors, the engineered strain could produce 1.710 g/L tryptophan after 48 h of shake-flask fermentation, which was 2.76-times higher than the titer of the parent strain. Taken together, our results demonstrate that the combination of optimizing precursor supply and regulating cofactor metabolism is an effective approach for high-level production of tryptophan. Similar strategies could be applied to the production of other amino acids or related derivatives.

15.
Elife ; 72018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281018

RESUMO

In the human fungal pathogen Cryptococcus neoformans, sex can benefit its pathogenicity through production of meiospores, which are believed to offer both physical and meiosis-created lineage advantages for its infections. Cryptococcus sporulation occurs following two parallel events, meiosis and differentiation of the basidium, the characteristic sexual structure of the basidiomycetes. However, the circuit integrating these events to ensure subsequent sporulation is unclear. Here, we show the spatiotemporal coordination of meiosis and basidial maturation by visualizing event-specific molecules in developing basidia defined by a quantitative approach. Monitoring of gene induction timing together with genetic analysis reveals co-regulation of the coordinated events by a shared regulatory program. Two RRM family regulators, Csa1 and Csa2, are crucial components that bridge meiosis and basidial maturation, further determining sporulation. We propose that the regulatory coordination of meiosis and basidial development serves as a determinant underlying the production of infectious meiospores in C. neoformans.


Assuntos
Cryptococcus neoformans/citologia , Cryptococcus neoformans/genética , Meiose/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/ultraestrutura , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genes Fúngicos Tipo Acasalamento , Mutação/genética , Fenótipo , Filogenia , Esporos Fúngicos/metabolismo
16.
Front Microbiol ; 9: 1781, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131782

RESUMO

The opportunistic human pathogen Talaromyces marneffei exhibits a temperature-dependent dimorphic transition, which is closely related with its pathogenicity. This species grows as multinucleate mycelia that produce infectious conidia at 25°C, while undergoes a dimorphic transition to generate uninucleate yeast form cells at 37°C. The mechanisms of phenotype switching are not fully understood. The transcription factor madsA gene is a member of the MADS-box gene family. Previously, it was found that overexpression of madsA gene resulted in mycelial growth instead of yeast form at 37°C. In the current study, the madsA deletion mutant (ΔmadsA) and complemented strain (CMA) were constructed by genetic manipulation. We compared the phenotypes, growth, conidiation, conidial germination and susceptibility to stresses (including osmotic and oxidative) of the ΔmadsA with the wild-type (WT) and CMA strains. The results showed that the ΔmadsA displayed a faster process of the yeast-to-mycelium transition than the WT and CMA. In addition, the deletion of madsA led to a delay in conidia production and conidial germination. The tolerance of ΔmadsA conidia to hydrogen peroxide was better than that of the WT and CMA strains. Then, RNA-seq was performed to identify differences in gene expression between the ΔmadsA mutant and WT strain during the yeast phase, mycelium phase, yeast-to-mycelium transition and mycelium-to-yeast transition, respectively. Gene ontology functional enrichment analyses indicated that some important processes such as transmembrane transport, oxidation-reduction process, protein catabolic process and response to oxidative stress were affected by the madsA deletion. Together, our results suggest that madsA functions as a global regulator involved in the conidiation and germination, especially in the dimorphic transition of T. marneffei. Its roles in the survival, pathogenicity and transmission of T. marneffei require further investigation.

17.
Nature ; 560(7720): 582-588, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30158607

RESUMO

The Newtonian gravitational constant, G, is one of the most fundamental constants of nature, but we still do not have an accurate value for it. Despite two centuries of experimental effort, the value of G remains the least precisely known of the fundamental constants. A discrepancy of up to 0.05 per cent in recent determinations of G suggests that there may be undiscovered systematic errors in the various existing methods. One way to resolve this issue is to measure G using a number of methods that are unlikely to involve the same systematic effects. Here we report two independent determinations of G using torsion pendulum experiments with the time-of-swing method and the angular-acceleration-feedback method. We obtain G values of 6.674184 × 10-11 and 6.674484 × 10-11 cubic metres per kilogram per second squared, with relative standard uncertainties of 11.64 and 11.61 parts per million, respectively. These values have the smallest uncertainties reported until now, and both agree with the latest recommended value within two standard deviations.

18.
Oncotarget ; 8(60): 102458-102467, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-29254261

RESUMO

AIMS: Trastuzumab emtansine (T-DM1), an antibody-drug conjugate against human epidermal growth factor receptor 2 (HER2), has been used in the treatment of patients with HER2-positive metastatic breast cancer (MBC). We conducted a meta-analysis to evaluate the efficacy and toxicity of T-DM1 for the treatment of patients with HER2-positive MBC. MATERIALS AND METHODS: Randomized controlled trials (RCTs), published in Pubmed, Embase, and Web of Science were systematically reviewed to assess the survival benefits and toxicity profile of HER2-positive patients with MBC who were treated with T-DM1. Outcomes included progression-free survival (PFS), overall survival (OS), overall response rate (ORR), and toxicities. Results were expressed as the hazard ratio (HR) with 95% confidence intervals (CIs). RESULTS: A total of 5 RCTs involving 3,720 patients met the inclusion criteria and were included in this meta-analysis. T-DM1 significantly prolonged PFS (HR = 0.73, 95% CI: 0.61, 0.86; P < 0.05), OS (HR = 0.68, 95% CI: 0.62, 0.74; P < 0.05), but it did not increase ORR (RR = 1.25, 95% CI: 0.94, 1.66; P = 0.148). Subgroup analysis indicated that T-DM1 significantly improved PFS when it was used as first-line (HR = 0.86, 95% CI: 0.74, 1.00; P < 0.05) or non-first-line treatment (HR = 0.65, 95% CI: 0.53, 0.81; P < 0.05). T-DM1 was associated with more frequent adverse events, including fatigue, elevated ALT, elevated AST, and thrombocytopenia, than other anti-HER2 therapies. CONCLUSIONS: Based on the current evidence, T-DM1 significantly prolonged PFS and OS with a tolerated toxicity than other anti-HER2 therapies in patients with HER2-positive MBC. These findings confirm the use of T-DM1 for the treatment of patients with HER2-positive MBC. Further well-designed, multi-center RCTs needed to identify these findings.

19.
Nurs Crit Care ; 22(6): 355-361, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27212426

RESUMO

BACKGROUND: Nursing-sensitive indicators are considered effective tools for improving the quality of care in hospitals. However, these have not been used in paediatric intensive care units (PICUs) in China. AIM: To develop nursing-sensitive indicators for PICUs and to assess the quality of nursing in PICUs in China based on the nursing-sensitive indicators. DESIGN: Multi-centre, cross-sectional study. METHODS: Structure, process and outcome indicators were developed and measured from 1 January to 31 March 2014 in seven PICUs in China. RESULTS: The structure indicators showed that one nurse cared for an average of 2·8 patients in a PICU, and 44% of nurses had a bachelor's degree. The process indicators revealed that hand-washing compliance varied across PICUs, whereas pain management and physical restraint have not been adequately addressed in China. The outcome indicators revealed that the incidence rates of ventilator-associated pneumonia and central-line-associated blood stream infections were 2·96 and 0·7, respectively, per 1000 device days. Patients were intubated for a total of 4392 mechanical ventilator days, and 32 patients (7·29‰) had an unplanned extubation. Nurses were moderately satisfied in their jobs (3·1 ± 0·3), and parents reported that nurses provide high quality of care. CONCLUSIONS: This study developed and used nursing-sensitive indicators to assess the quality of nursing in PICUs in China, which provided a reference for national and international comparisons of nursing quality in PICUs. Nursing staffing levels and education should be improved. Pain management and physical restraints should be regulated in China's PICUs. Nurse managers need to explore staff attitudes towards implementation of family-centred care. The development of a national database of nursing quality indicators can contribute to quality and safety improvement. RELEVANCE TO CLINICAL PRACTICE: This study developed a set of nursing-sensitive indicators, and these indicators were used to assess and improve the quality of nursing in PICUs.


Assuntos
Enfermagem de Cuidados Críticos/organização & administração , Cuidados Críticos/organização & administração , Unidades de Terapia Intensiva Pediátrica/organização & administração , Segurança do Paciente/estatística & dados numéricos , Melhoria de Qualidade , Atitude do Pessoal de Saúde , Criança , Pré-Escolar , Estudos Transversais , Feminino , Hospitais Universitários , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Medição de Risco , Taiwan
20.
Fungal Genet Biol ; 81: 191-200, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25857260

RESUMO

Fumosorinone, isolated from the entomogenous fungus Isaria fumosorosea, is a new 2-pyridone alkaloid which is elucidated by HRESIMS 1D and 2DNMR. Fumosorinone is structurally similar to tenellin and desmethylbassianin but it differs in chain length and degree of methylation. It is characterized by a classic noncompetitive inhibitor of protein tyrosine phosphatase 1B (IC50 14.04µM) which was implicated as a negative regulator of insulin receptor signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. For further study, we identified the biosynthetic gene cluster of fumosorinone from ongoing genome sequencing project, and it was verified by a direct knock-out strategy, reported for the first time in I. fumosorosea, using the Agrobacterium-mediated transformation in conjunction with linear deletion cassettes. The biosynthetic gene cluster includes a hybrid polyketide synthase-nonribosomal peptide synthetase gene, two cytochrome P450 enzyme genes, a trans-enoyl reductase gene, and other two transcription regulatory genes. Comparison of fumosorinone biosynthetic cluster with known gene clusters gives further insight into biosynthesis of pyridone alkaloids and provides the foundation for combinatorial biosynthesis for new fumosorinone derivatives.


Assuntos
Vias Biossintéticas/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Hypocreales/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Piridonas/química , Piridonas/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , Técnicas de Inativação de Genes , Hypocreales/genética , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Análise de Sequência de DNA , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...