Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168919, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38030012

RESUMO

Microplastics (MPs) are ubiquitous pollutants found in aquaculture animals that may threaten human health through the food chain. However, there is a lack of effective methods for extracting MPs from aquaculture feeds containing complex components such as organic matter and fish bones. Therefore, in the present study, the extraction efficiency of three digestion methods using 30 % H2O2, Fenton reagent, and 30 % H2O2 + HNO3 for different particle sizes and types of MPs in aquaculture feeds was investigated and compared. The total digestion efficiency of the aquaculture feeds by 30 % H2O2 was 97.3 ± 0.1 %, while the recovery efficiency of MPs was 91.3 ± 1.1 % -103.1 ± 0.9 %. However, there was a large deviation in the extraction efficiency of MPs from aquaculture feeds by the Fenton reagent and 30 % H2O2 + HNO3. Notably, the surface morphology, particle size distribution, and oxidation degree of MPs hardly changed after 30 % H2O2 digestion. More importantly, the changes in the spectral features and carbonyl index of MPs after 30 % H2O2 digestion were smaller than those of the Fenton reagent and 30 % H2O2 + HNO3, which did not affect the identification of MPs. Overall, 30 % H2O2 was more efficient in extracting MPs from aquaculture feeds, and no significant effect on the characteristics of MPs was observed. This work provides novel insights into the effect of chemical pretreatment on the extraction of MPs in aquaculture feeds and provides an optimal protocol for the detection of MPs in aquaculture feeds.


Assuntos
Ferro , Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Aquicultura , Digestão , Peróxido de Hidrogênio , Plásticos , Poluentes Químicos da Água/análise
2.
J Hazard Mater ; 459: 132127, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37573823

RESUMO

p-Phenylenediamines (PPDs), an important type of rubber antioxidants, have received little study on their environmental fate, particularly for their vital photodegradation process in water environment. Accordingly, N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6PPD), as a representative of PPDs, was investigated experimentally and theoretically for its photodegradation in water. Rapid photodegradation occurred when 6PPD was exposed to illumination especially UV region irradiation. Under acidic conditions, the photodegradation of 6PPD accelerated mainly due to the increased absorption of long wavelength irradiation by ionized 6PPD. Nine photodegradation products (e.g., 6PPD-quinone (6PPDQ)) of 6PPD were identified by an ultra-performance liquid chromatography QTOF mass spectrometry. Molar yields of photoproducts such as 6PPDQ, aniline, 4-aminodiphenylamine, and 4-hydroxydiphenylamine were 0.03 ± 0.00, 0.10 ± 0.01, 0.03 ± 0.02, and 0.08 ± 0.01, respectively. Mechanisms involved in 6PPD photodegradation include photoexcitation, direct photolysis, self-sensitized photodegradation, and 1O2 oxidation, as demonstrated by electron paramagnetic resonance (EPR) analysis, scavenging experiments, and the time-dependent density functional theory (TD-DFT). Notably, the toxicity of the reaction solution formed during the photodegradation of 6PPD was increased by the formation of highly toxic products (e.g., 6PPDQ). This study provides the first explanation for photodegradation mechanisms of 6PPD and confirms the pathway of 6PPDQ produced by the photoreaction in water environment.

3.
Sci Total Environ ; 902: 165903, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524188

RESUMO

Microplastics (MPs) in household cleaning products are a significant source of primary MPs. However, their presence in these products remain largely unknown. In this study, three types of common household cleaning products (laundry detergents, toilet bowl cleaners, and dishwashing detergents) were examined to assess the presence of MPs. The potential global emissions of MPs into aquatic environments resulting from the use of these products were estimated using statistics on global wastewater treatment plants (WWTPs) and household cleaning product markets. The average abundance of MPs in household cleaning products was 564.97 ± 327.83 n·kg-1, with toilet bowl cleaners having a significantly higher abundance than the other two products. The most commonly detected polymers in these products were polyamide (PA), silicone, polyurethane (PU), acrylate copolymer (ACR), polyethylene (PE), and polyethylene terephthalate (PET), while the size of the MPs ranged from 21.34 to 442.97 µm, with 81.52 % being <50 µm and 87.32 % being fragment-shaped. The estimated annual MP emissions from these three types of household cleaning products were 3.88 × 1013 ± 1.35 × 1013, with toilet bowl cleaners accounting for 56.44 % of the total emissions. MPs directly released without treatment in WWTPs (2.46 × 1013 n year-1) accounted for 63.40 % of the total emissions, highlighting the importance of increasing the treated rate of wastewater to reduce MP emissions. Sensitivity tests indicated that increasing the MP removal rates of secondary and tertiary WWTPs could also effectively reduce MP emissions. Moreover, gross and per capita MP emissions in 149 countries showed significant differences, which could be attributed to population, market size, demand for household cleaning products, and the level of MP removal among different countries. The findings of this study provide important insights into controlling MP contamination in household cleaning products.

4.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1415-1429, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236960

RESUMO

Increasingly serious pollution of antibiotic resistance genes (ARGs) caused by the abuse of antibiotics in livestock and poultry industry has raised worldwide concerns. ARGs could spread among various farming environmental media through adsorption, desorption, migration, and also could transfer into human gut microbiome by hori-zontal gene transfer (HGT), posing potential threats to public health. However, the comprehensive review on the pollution patterns, environmental behaviors, and control techniques of ARGs in livestock and poultry environments in view of One Health is still inadequate, resulting in the difficulties in effectively assessing ARGs transmission risk and developing the efficient control strategies. Here, we analyzed the pollution characteristics of typical ARGs in various countries, regions, livestock species, and environmental media, reviewed the critical environmental fate and influencing factors, control strategies, and the shortcomings of current researches about ARGs in the livestock and poultry farming industry combined with One Health philosophy. In particular, we addressed the importance and urgency of identifying the distribution characteristics and environmental process mechanisms of ARGs, and developing green and efficient ARG control means in livestock farming environments. We further proposed gaps and prospects for the future research. It would provide theoretical basis for the research on health risk assessment and technology exploitation of alleviating ARG pollution in livestock farming environment.


Assuntos
Antibacterianos , Aves Domésticas , Animais , Humanos , Aves Domésticas/genética , Antibacterianos/farmacologia , Gado/genética , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Agricultura
5.
Sci Total Environ ; 889: 164173, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201824

RESUMO

Microplastic (MP) pollution is a serious global environmental problem, particularly in marine ecosystems. However, the pollution patterns of MPs in the ocean and atmosphere, particularly the sea-air interrelationship, remain unclear. Therefore, the abundance, distribution patterns, and sources of MPs in the seawater and atmosphere of the South China Sea (SCS) were comparatively investigated. The results showed that MPs were prevalent in the SCS with an average abundance of 103.4 ± 98.3 items/m3 in the seawater and 4.62 ± 3.60 items/100 m3 in the atmosphere. The spatial analysis indicated that the pollution patterns of seawater MPs were mainly determined by land-based discharge and sea surface currents, whereas atmospheric MPs were predominantly determined by air parcel trajectory and wind conditions. The highest MP abundance of 490 items/m3 in seawater was found at a station near Vietnam with current vortices. However, the highest MP abundance of 14.6 items/100 m3 in the atmosphere was found in air parcels with low-speed southerly winds from Malaysia. Similar MP compositions (e.g., polyethylene terephthalate, polystyrene, and polyethylene) were observed in the two environmental compartments. Furthermore, similar MP characteristics (e.g., shape, color, and size) in the seawater and atmosphere of the same region suggested a close relationship between the MPs in the two compartments. For this purpose, cluster analysis and calculation of the MP diversity integrated index were performed. The results showed an obvious dispersion between the two compartment clusters and a higher diversity integrated index of MPs in seawater than in the atmosphere, thus implying higher compositional diversity and more complex sources of MPs in seawater relative to the atmosphere. These findings deepen our understanding of MP fate and patterns in the semi-enclosed marginal sea environment and highlight the potential interrelationship of MPs in the air-sea system.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água do Mar , China , Atmosfera
6.
ACS Environ Au ; 3(2): 105-120, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102089

RESUMO

Spread of antibiotic resistance genes (ARGs) by conjugation poses great challenges to public health. Application of pyroligneous acids (PA) as soil amendments has been evidenced as a practical strategy to remediate pollution of ARGs in soils. However, little is known about PA effects on horizontal gene transfer (HGT) of ARGs by conjugation. This study investigated the effects of a woody waste-derived PA prepared at 450°C and its three distillation components (F1, F2, and F3) at different temperatures (98, 130, and 220°C) on conjugative transfer of plasmid RP4 within Escherichia coli. PA at relatively high amount (40-100 µL) in a 30-mL mating system inhibited conjugation by 74-85%, following an order of PA > F3 ≈ F2 ≈ F1, proving the hypothesis that PA amendments may mitigate soil ARG pollution by inhibiting HGT. The bacteriostasis caused by antibacterial components of PA, including acids, phenols, and alcohols, as well as its acidity (pH 2.81) contributed to the inhibited conjugation. However, a relatively low amount (10-20 µL) of PA in the same mating system enhanced ARG transfer by 26-47%, following an order of PA > F3 ≈ F2 > F1. The opposite effect at low amount is mainly attributed to the increased intracellular reactive oxygen species production, enhanced cell membrane permeability, increased extracellular polymeric substance contents, and reduced cell surface charge. Our findings highlight the hormesis (low-amount promotion and high-amount inhibition) of PA amendments on ARG conjugation and provide evidence for selecting an appropriate amount of PA amendment to control the dissemination of soil ARGs. Moreover, the promoted conjugation also triggers questions regarding the potential risks of soil amendments (e.g., PA) in the spread of ARGs via HGT.

7.
Mar Pollut Bull ; 150: 110660, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31727317

RESUMO

Growing evidences revealed the deleterious impacts of microplastics (MPs) on marine organisms. However, the effects of MPs on the movement behavior of marine crustacean is poorly understood. Therefore, this study aims to evaluate the physiological and behavioral responses of mysid shrimp (Neomysis japonica) larvae to polystyrene (PS) and carboxylated polystyrene (PS-COOH). PS-COOH presented a greater physiological toxicity to shrimp larvae compared to PS, causing significant lethal and growth inhibition effect, owing to bioaccumulation of MPs inside stomach. Both two MPs decreased the feeding efficiency of larvae, showing weakened predation competence. Moreover, reduced hunting and/or explorative ability of shrimps caused by MPs was also identified, which was evidenced by an overall decrease in swimming activity, range and frequency after exposure. Our study firstly highlighted that micron-sized polystyrene particles had the negative effects on the movement behavior of mysid shrimp larvae, thus posing potential hazard to population dynamics and ecological function of marine crustacean.


Assuntos
Comportamento Animal/efeitos dos fármacos , Crustáceos/fisiologia , Microplásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Plásticos , Natação
8.
Mar Pollut Bull ; 139: 346-354, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686437

RESUMO

Little knowledge is available on impact of microplastics (MPs) on the bivalve larvae at different developmental stages throughout their life history, especially for metamorphic stage. Therefore, this study aims to evaluate the toxic responses of carboxylated (PS-COOH) and amino (PS-NH2) polystyrene MPs on the developing clam larvae at three key life stages, i.e., fertilized eggs, D-veliger larvae, and umbo larvae. PS-COOH and PS-NH2 significantly decreased the hatching rates by 5.79-39.5% and developmental rates by 4.78-7.86% of the clam larvae relative to the unexposed clam larvae. The toxicity of MPs followed the order: hatching stage > metamorphosis > D-veliger larvae stage, showing stage-dependent toxic effects. Moreover, PS-NH2 with a smaller hydrodynamic diameter showed a greater toxicity to the developing larvae compared to PS-COOH. Our study highlighted the stage-dependent toxic effects of MPs on the developing clam larvae, thus posing ecological risks to population succession of marine bivalves and aquatic ecosystems.


Assuntos
Bivalves/efeitos dos fármacos , Bivalves/crescimento & desenvolvimento , Poliestirenos/toxicidade , Animais , Ecotoxicologia , Feminino , Larva/efeitos dos fármacos , Masculino , Metamorfose Biológica/efeitos dos fármacos , Poliestirenos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...