Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int Immunopharmacol ; 119: 110155, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044035

RESUMO

OBJECTIVE: The aim of this study was to elucidate the role of enhancer of zeste homolog 2 (EZH2) in the breakdown of B cell immune tolerance and production of autoantibodies in systemic lupus erythematosus (SLE), and to explore the therapeutic effects of EZH2 inhibition on lupus. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from new-onset SLE patients for flow cytometric analysis. Pristane-induced lupus mice were constructed, and the EZH2 inhibitor was administrated by intraperitoneal injection to treat lupus mice. Blood and urine were collected from lupus mice to detect autoantibodies and proteinuria, and renal pathology scores were assessed. Mouse spleen B cells were sorted with magnetic beads and subjected to flow cytometric apoptosis detection, real time quantitative PCR (RT-qPCR), and western blotting (WB). RESULTS: EZH2 expression was elevated in diverse B-cell subsets in both SLE patients and pristane-induced lupus mice. The EZH2 inhibitor attenuated lupus-like symptoms and dampened autoantibody production in pristane-induced lupus mice. Inhibition of EZH2 also reduced autoantibody secretion by plasma cells from lupus patients. Mechanistically, EZH2 mediated the impaired apoptosis of autoreactive B cells and the differentiation of autoantibody producing plasma cells by inhibiting multiple cyclin-dependent kinase inhibitor (CKI) genes. CONCLUSION: EZH2 mediated the breakdown of B-cell peripheral immune tolerance by inhibiting CKI genes and participated in the generation of autoantibodies in SLE. EZH2 inhibition could serve as a promising drug intervention for the treatment of SLE.


Assuntos
Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Leucócitos Mononucleares/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Autoanticorpos
2.
Front Pharmacol ; 13: 1002741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313363

RESUMO

The pathogenesis of systemic lupus erythematosus (SLE) is related to immune homeostasis imbalance. Epigenetic mechanisms have played a significant role in breaking immune tolerance. Enhancer of zeste homolog 2 (EZH2), the specific methylation transferase of lysine at position 27 of histone 3, is currently found to participate in the pathogenesis of SLE through affecting multiple components of the immune system. This review mainly expounds the mechanisms underlying EZH2-mediated disruption of immune homeostasis in SLE patients, hoping to provide new ideas in the pathogenesis of SLE and new targets for future treatment.

3.
Int J Mol Med ; 50(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36043524

RESUMO

Zinc finger protein 667 (ZNF667, also referred as Mipu1), a widely expressed KRAB/C2H2­type zinc finger transcription factor, can protect against hypoxic­ischemic myocardial injury. Pro­angiogenesis is regarded as a promising strategy for the treatment of acute myocardial infarction (AMI). However, whether ZNF667 is involved in the angiogenesis following AMI remains to be elucidated. The present study reported that the expression of ZNF667 in CD31­positive endothelial cells (ECs) was upregulated in the heart of AMI mice. Hypoxic challenge (1% oxygen) promoted the mRNA and protein expression of ZNF667 in the human umbilical vein endothelial cells (HUVECs) in a time­dependent manner. Moreover, ZNF667 promoted hypoxia­induced invasion and tube formation of HUVECs. Mechanically, ZNF667 could directly bind to the promoter of anti­angiogenic gene VASH1 and inhibit its expression. Consequently, VASH1 overexpression abolished hypoxic challenge or ZNF667 overexpression­induced invasion and tube formation of HUVECs. Further bioinformatic analyses suggested that overexpression of ZNF667 or knockdown of VASH1­induced differentially expressed genes in HUVECs were greatly enriched in the Wnt signaling pathway (DAAM1, LEF1, RAC2, FRAT1, NFATc2 and WNT5A). Together, these data suggested that ZNF667 facilitates myocardial ischemia­driven angiogenesis through transcriptional repression of VASH1 and regulation of Wnt signaling pathway.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Doença da Artéria Coronariana , Infarto do Miocárdio , Isquemia Miocárdica , Proteínas Oncogênicas , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Doença da Artéria Coronariana/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP
4.
Mol Ther Nucleic Acids ; 29: 312-328, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35950214

RESUMO

Myocardial infarction (MI) is a cardiovascular disease with high morbidity and mortality. Clinically, rehabilitation after massive MI often has a poor prognosis. Therefore, it is necessary to explore the therapeutic methods of myocardial protection after MI. As a first-line treatment for type 2 diabetes, metformin has been found to have a certain protective effect on myocardial tissue. However, its pharmacological mechanism remains unclear. In this study, we investigated key factors that reduced MI with metformin. Through in vivo, in vitro, and in silico analyses, we identified HSF1 as a key target for metformin. HSF1 could up-regulate the transcriptional level of AMPKα2 through transcriptional activation and stimulate the activity of the downstream AMPK/mTOR signaling pathway. Metformin stimulated cardiomyocytes to form stress granules (SGs), and knockdown of HSF1 reversed this process. Furthermore, HSF1 exhibited better in vitro affinity for metformin than AMPK, suggesting that HSF1 may be a more sensitive target for metformin.

5.
Biochem Biophys Res Commun ; 620: 21-28, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777130

RESUMO

Myeloid-derived suppressor cells (MDSCs) mobilize and migrate from bone marrow to peripheral tissues or immune organs, which is associated with poor prognosis in sepsis. Intervention of MDSCs might be a potential target for the effective treatment of sepsis. In the present study, we demonstrated that IL-1R1 blockade with either recombinant human IL-1R antagonist Anakinra or IL-1R1 deficiency had a protective effect on the liver injury in septic mice. The possible mechanism was that Anakinra treatment and IL-1R1 knockout inhibited the migration of MDSCs to the liver in sepsis, thus attenuating the immune suppression of MDSCs on effector T cells characterized with the decrease in proportion of CD4+ and CD8+ T cells. Furthermore, the switch from pro-inflammatory M1 macrophage to anti-inflammatory M2 phenotype and the ability of bacterial clearance in the liver of septic mice were enhanced obviously by Anakinra and IL-1R1 deficiency, which contributes to the attenuated liver injury. Taken together, these findings provide new ideas for revealing the relationship between IL-1R1 and MDSCs in sepsis, thereby providing a potentially effective target for ameliorating septic liver injury.


Assuntos
Células Supressoras Mieloides , Receptores Tipo I de Interleucina-1/metabolismo , Sepse , Animais , Linfócitos T CD8-Positivos , Humanos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Sepse/tratamento farmacológico
6.
Cell Signal ; 92: 110272, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122988

RESUMO

OBJECTIVE: The present study aimed to investigate whether the drug nicorandil can improve cardiac remodeling after myocardial infarction (MI) and the underlying mechanisms. METHODS: Mouse MI was established by the ligation of the left anterior descending coronary artery and H9C2 cells were cultured to investigate the underlying molecular mechanisms. The degree of myocardial collagen (Col) deposition was evaluated by Masson's staining. The expressions of nucleolin, autophagy and myocardial remodeling-associated genes were measured by Western blotting, qPCR, and immunofluorescence. The apoptosis of myocardial tissue cells and H9C2 cells were detected by TUNEL staining and flow cytometry, respectively. Autophagosomes were observed by transmission electron microscopy. RESULTS: Treatment with nicorandil mitigated left ventricular enlargement, improved the capacity of myocardial diastolic-contractility, decreased cardiomyocyte apoptosis, and inhibited myocardial fibrosis development post-MI. Nicorandil up-regulated the expression of nucleolin, promoted autophagic flux, and decreased the expressions of TGF-ß1 and phosphorylated Smad2/3, while enhanced the expression of BMP-7 and phosphorylated Smad1 in myocardium. Nicorandil decreased apoptosis and promoted autophagic flux in H2O2-treated H9C2 cells. Autophagy inhibitors 3-methyladenine (3MA) and chloroquine diphosphate salt (CDS) alleviated the effects of nicorandil on apoptosis. Knockdown of nucleolin decreased the effects of nicorandil on apoptosis and nicorandil-promoted autophagic flux of cardiomyocytes treated with H2O2. CONCLUSIONS: Treatment with nicorandil alleviated myocardial remodeling post-MI through up-regulating the expression of nucleolin, and subsequently promoting autophagy, followed by regulating TGF-ß/Smad signaling pathway.


Assuntos
Infarto do Miocárdio , Nicorandil , Animais , Apoptose , Autofagia , Peróxido de Hidrogênio/farmacologia , Camundongos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Nicorandil/farmacologia , Nicorandil/uso terapêutico , Fosfoproteínas , Proteínas de Ligação a RNA , Remodelação Ventricular , Nucleolina
7.
Diagnostics (Basel) ; 11(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34679604

RESUMO

BACKGROUND: Sepsis is the leading cause of mortality in intensive care units (ICUs). However, early diagnosis and prognosis of sepsis and septic shock are still a great challenge. Pentraxin-3 (PTX3) was shown to be associated with the severity and outcome of sepsis and septic shock. This study was carried out to investigate the diagnostic and prognostic value of PTX3 in patients with sepsis and septic shock based on Sepsis 3.0 definitions. METHODS: In this single-center prospective observational study, all patients' serum was collected for biomarker measurements within 24 h after admission. Logistic and Cox regression analyses were used to identify the potential biomarkers of diagnosis, severity stratification, and prediction. RESULTS: Serum levels of PTX3 were significantly increased on the first day of ICU admission, while septic shock patients had highest PTX3 levels than other groups. A combination between PTX3 and procalcitonin (PCT) could better discriminate sepsis and septic shock, and PTX3 was an independent predictor of mortality in sepsis and septic shock patients. CONCLUSION: PTX3 may be a robust biomarker to classify the disease severity and predict the 90-day mortality of sepsis and septic shock based on the latest Sepsis 3.0 definitions.

8.
PeerJ ; 9: e11699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249516

RESUMO

BACKGROUND: Early and accurate diagnosis of microorganism(s) is important to optimize antimicrobial therapy. Shotgun metagenomic sequencing technology, an unbiased and comprehensive method for pathogen identification, seems to potentially assist or even replace conventional microbiological methodology in the diagnosis of infectious diseases. However, evidence in clinical application of this platform is relatively limited. METHODS: To evaluate the capability of shotgun metagenomic sequencing technology in clinical practice, both shotgun metagenomic sequencing and conventional culture were performed in the PCR-positive body fluid specimens of 20 patients with suspected infection. The sequenced data were then analyzed for taxonomic identification of microbes and antibiotic resistance gene prediction using bioinformatics pipeline. RESULTS: Shotgun metagenomic sequencing results showed a concordance of 17/20 compared with culture results in bacterial detection, and a concordance of 20/20 compared with culture results in fungal detection. Besides, drug-resistant types annotated from antibiotic resistance genes showed much similarity with antibiotic classes identified by susceptibility tests, and more than half of the specimens had consistent drug types between shotgun metagenomic sequencing and culture results. CONCLUSIONS: Pathogen identification and antibiotic resistance gene prediction by shotgun metagenomic sequencing identification had the potential to diagnose microorganisms in infectious diseases, and it was especially helpful for multiple microbial co-infections and for the cases where standard culture approached failed to identify microorganisms.

9.
Biochem Biophys Res Commun ; 551: 155-160, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33740622

RESUMO

OBJECTIVES: Clinically amyopathic dermatomyositis (CADM) is a subtype of dermatomyositis (DM) characterized by low-grade or absent muscle inflammation but frequent and rapidly progressive interstitial lung disease (RP-ILD) and skin ulcers with anti-melanoma differentiation-associated gene 5 (anti-MDA5) autoantibodies. Basic leucine zipper transcription factor ATF-like 2 (BATF2) is thought to function as an inhibitor of tumours and inflammation. Here, we aimed to investigate the roles of BATF2 in Th cell differentiation of CADM with an anti-MDA5 autoantibody (anti-MDA5+ CADM). METHODS: Naive CD4+ T cells from human peripheral blood mononuclear cells (PBMCs) of healthy controls (HCs) were isolated and then cultured with IL-12, TGF-ß or TGF-ß plus IL-6 following anti-CD3 and anti-CD28 stimulations. The expression of BATF2 was measured by real-time PCR. The percentages of Th1, Th17 and Treg CD4+ T cells were detected by flow cytometry. BATF2 knockdown of CD4+ T cells was performed using small interfering RNAs (siRNAs). RESULTS: The expression of BATF2 in PBMCs was higher in anti-MDA5+ CADM patients than in healthy controls. The BATF2 mRNA expression was increased under Th1 and Treg polarization but decreased under Th17 polarization. Th17 cell activation-associated genes were possibly increased while Th1 and Treg cell differentiation-associated genes were inhibited by posttranscriptional gene silencing of BATF2 in CD4+ T cells. CONCLUSIONS: BATF2 promoted Th1 and Treg cell differentiation but suppressed Th17 cell activation in anti-MDA5+ CADM.


Assuntos
Autoanticorpos/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD4-Positivos/imunologia , Dermatomiosite/imunologia , Dermatomiosite/metabolismo , Imunidade Celular , Helicase IFIH1 Induzida por Interferon/imunologia , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Feminino , Humanos , Masculino , RNA Mensageiro/análise , RNA Mensageiro/genética , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th1/citologia , Células Th1/imunologia , Células Th17/citologia , Células Th17/imunologia , Proteínas Supressoras de Tumor/genética , Regulação para Cima
10.
Life Sci ; 276: 119434, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33785343

RESUMO

AIMS: Immunosuppressive myeloid-derived suppressor cells (MDSCs) continuously expand and lead to poor outcome during sepsis. The activation of liver X receptor (LXR) can mitigate sepsis-induced liver and myocardial damage. This study aims to determine whether LXR plays a protective role in sepsis by regulating MDSCs. MAIN METHODS: Cecal ligation and puncture(CLP)was used to induce sepsis in mice. The mice were then treated with LXR agonist GW3965 (3 mg/kg) or vehicle 1 h, 6 h, 12 h, 24 h, 48 h, 72 h postoperatively. The effect of LXR on the survival rate and multi-organ injury induced by sepsis was evaluated by survival analysis, histological staining, biochemical analysis and ELISAs. The percentages of MDSCs and T cells were detected using flow cytometry. The mRNA expressions of LXR and ATP-binding cassette transporter A1 (ABCA1) were measured using real-time quantitative PCR (RT-qPCR). ABCA1 protein level was determined using immunofluorescence staining. KEY FINDINGS: LXR agonist GW3965 treatment improved the survival of septic mice, accompanied by reduced multi-organ injury and a decreased level of inflammatory cytokines. Furthermore, GW3965 treatment decreased MDSCs abundance in spleen by boosting the apoptosis of spleen MDSCs, therefore ameliorating their immunosuppressive activity. Meanwhile, bacteria clearance in tissues was enhanced after the GW3965 administration in septic mice. Mechanistically, GW3965 activated LXRß and its downstream target ABCA1 to initiate the apoptosis of spleen MDSCs. SIGNIFICANCE: These findings provide new insights into the relationship between LXR and MDSCs in sepsis, thus revealing a potentially effective approach to target the immunosuppression of sepsis.


Assuntos
Apoptose , Benzoatos/farmacologia , Benzilaminas/farmacologia , Receptores X do Fígado/agonistas , Células Supressoras Mieloides/patologia , Substâncias Protetoras/farmacologia , Sepse/tratamento farmacológico , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sepse/metabolismo , Sepse/patologia
11.
Int J Mol Med ; 47(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33448325

RESUMO

Metabolism reprogramming influences the severity of organ dysfunction, progression to fibrosis, and development of disease in acute kidney injury (AKI). Previously we showed that inhibition of aerobic glycolysis improved survival rates and protected septic mice from kidney injury. However, the underlying mechanisms remain unclear. In the present study, it was revealed that sepsis or lipopolysaccharide (LPS) enhanced aerobic glycolysis as evidenced by increased lactate production and upregulated mRNA expression of glycolysis­related genes in kidney tissues and human renal tubular epithelial (HK­2) cells. The aerobic glycolysis inhibitor 2­deoxy­D­glucose (2­DG) downregulated glycolysis, and improved kidney injury induced by sepsis. 2­DG treatments increased the expression of sirtuin 3 (SIRT3) and phosphorylation­AMP­activated protein kinase (p­AMPK), following promoted autophagy and attenuated apoptosis of tubular epithelial cells in septic mice and in LPS­treated HK­2 cells. However, the glycolysis metabolite lactate downregulated SIRT3 and p­AMPK expression, inhibited autophagy and enhanced apoptosis in LPS­treated HK­2 cells. Furthermore, pharmacological blockade of autophagy with 3­methyladenine (3­MA) partially abolished the protective effect of 2­DG in sepsis­induced AKI. These findings indicated that inhibition of aerobic glycolysis protected against sepsis­induced AKI by promoting autophagy via the lactate/SIRT3/AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Injúria Renal Aguda/metabolismo , Autofagia/efeitos dos fármacos , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Ácido Láctico/metabolismo , Sepse/metabolismo , Sirtuína 3/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Sepse/complicações , Sepse/patologia
12.
Thromb Haemost ; 121(8): 1066-1078, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33296942

RESUMO

Sepsis is a life-threatening complication of infection closely associated with coagulation abnormalities. Heat shock factor 1 (HSF1) is an important transcription factor involved in many biological processes, but its regulatory role in blood coagulation remained unclear. We generated a sepsis model in HSF1-knockout mice to evaluate the role of HSF1 in microthrombosis and multiple organ dysfunction. Compared with septic wild-type mice, septic HSF1-knockout mice exhibited a greater degree of lung, liver, and kidney tissue damage, increased fibrin/: fibrinogen deposition in the lungs and kidneys, and increased coagulation activity. RNA-seq analysis revealed that tissue-type plasminogen activator (t-PA) was upregulated in the lung tissues of septic mice, and the level of t-PA was significantly lower in HSF1-knockout mice than in wild-type mice in sepsis. The effects of HSF1 on t-PA expression were further validated in HSF1-knockout mice with sepsis and in vitro in mouse brain microvascular endothelial cells using HSF1 RNA interference or overexpression under lipopolysaccharide stimulation. Bioinformatics analysis, combined with electromobility shift and luciferase reporter assays, indicated that HSF1 directly upregulated t-PA at the transcriptional level. Our results reveal, for the first time, that HSF1 suppresses coagulation activity and microthrombosis by directly upregulating t-PA, thereby exerting protective effects against multiple organ dysfunction in sepsis.


Assuntos
Coagulação Sanguínea , Fatores de Transcrição de Choque Térmico/metabolismo , Insuficiência de Múltiplos Órgãos/prevenção & controle , Sepse/sangue , Trombose/prevenção & controle , Ativador de Plasminogênio Tecidual/genética , Ativação Transcricional , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fatores de Transcrição de Choque Térmico/genética , Masculino , Camundongos Knockout , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/microbiologia , Sepse/genética , Sepse/microbiologia , Trombose/sangue , Trombose/genética , Trombose/microbiologia , Ativador de Plasminogênio Tecidual/sangue , Regulação para Cima
13.
J Mol Cell Cardiol ; 150: 65-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098823

RESUMO

Palmitic acid (PA)-induced myocardial injury is considered a critical contributor to the development of obesity and type 2 diabetes mellitus (T2DM)-related cardiomyopathy. However, the underlying mechanism has not been fully understood. Here, we demonstrated that PA induced the cell death of H9c2 cardiomyoblasts in a dose- and time-dependent manner, while different ferroptosis inhibitors significantly abrogated the cell death of H9c2 cardiomyoblasts and primary neonatal rat cardiomyocytes exposed to PA. Mechanistically, PA decreased the protein expression levels of both heat shock factor 1 (HSF1) and glutathione peroxidase 4 (GPX4) in a dose- and time-dependent manner, which were restored by different ferroptosis inhibitors. Overexpression of HSF1 not only alleviated PA-induced cell death and lipid peroxidation but also improved disturbed iron homeostasis by regulating the transcription of iron metabolism-related genes (e.g., Fth1, Tfrc, Slc40a1). Additionally, PA-blocked GPX4 protein expression was evidently restored by HSF1 overexpression. Inhibition of endoplasmic reticulum (ER) stress rather than autophagy contributed to HSF1-mediated GPX4 expression. Moreover, GPX4 overexpression protected against PA-induced ferroptosis, whereas knockdown of GPX4 reversed the anti-ferroptotic effect of HSF1. Consistent with the in vitro findings, PA-challenged Hsf1-/- mice exhibited more serious ferroptosis, increased Slc40a1 and Fth1 mRNA expression, decreased GPX4 and TFRC expression and enhanced ER stress in the heart compared with Hsf1+/+ mice. Altogether, HSF1 may function as a key defender against PA-induced ferroptosis in cardiomyocytes by maintaining cellular iron homeostasis and GPX4 expression.


Assuntos
Ferroptose , Fatores de Transcrição de Choque Térmico/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ácido Palmítico/farmacologia , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Ferro/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos
14.
Oxid Med Cell Longev ; 2020: 1936580, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381262

RESUMO

Heat shock factor 1 (HSF1) is a transcription factor involved in the heat shock response and other biological processes. We have unveiled here an important role of HSF1 in acute lung injury (ALI). HSF1 knockout mice were used as a model of lipopolysaccharide- (LPS-) induced ALI. Lung damage was aggravated, and macrophage infiltration increased significantly in the bronchoalveolar lavage fluid (BALF) and lung tissue of HSF-/- mice compared with the damage observed in HSF1+/+ mice. Upon LPS stimulation, HSF-/- mice showed higher levels of monocyte chemoattractant protein-1 (MCP-1) in the serum, BALF, and lung tissue and increased the expression of MCP-1 and chemokine (C-C motif) receptor 2 (CCR2) on the surface of macrophages compared with those in HSF1+/+. Electrophoretic mobility shift assays (EMSA) and dual luciferase reporter assays revealed that HSF1 could directly bind to heat shock elements (HSE) in the promoter regions of MCP-1 and its receptor CCR2, thereby inhibiting the expression of both genes. We concluded that HSF1 attenuated LPS-induced ALI in mice by directly suppressing the transcription of MCP-1/CCR2, which in turn reduced macrophage infiltration.


Assuntos
Lesão Pulmonar Aguda/genética , Fatores de Transcrição de Choque Térmico/fisiologia , Macrófagos/fisiologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Permeabilidade Capilar/genética , Movimento Celular/genética , Feminino , Lipopolissacarídeos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Células RAW 264.7
15.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 45(2): 109-114, 2020 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-32386033

RESUMO

OBJECTIVES: To investigate effect of MIPU1 silence on proliferation, apoptosis, migration and invasion in U251 cells. METHODS: The shRNA recombinant plasmids targeting MIPU1 gene was transfected into U251 cells. Western blotting was used to identify the inhibitory efficiency at 72 h after transfection. The cell viability was measured by MTT colorimetric assay. Hoechest staining and caspase-3 activity were used to detect apoptosis. Then wound healing assay and transwell migration assay were applied to detect the migration and invasion of cells. RESULTS: The expression of MIPU1 protein was effectively knocked down in transfected cells (P<0.05). The cellular proliferation was obviously inhibited and apoptosis was increased in shRNA-transfected MIPU1 cells (all P<0.05). The migration and invasion ability of cells transfected with positive plasmid was lower than that in the control group (P<0.05). CONCLUSIONS: Down-regulation of MIPU1 can promote apoptosis while inhibit the proliferation, invasion, and migration of U251 cells.


Assuntos
Apoptose , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Invasividade Neoplásica , Interferência de RNA , RNA Interferente Pequeno , Transfecção
16.
Basic Res Cardiol ; 115(3): 29, 2020 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248306

RESUMO

Autophagy in cardiomyocyte is involved in myocardial ischemia/reperfusion (M-I/R) injury. Caspase recruitment domain-containing protein 9 (CARD9) plays a critical role in cardiovascular diseases (CVDs) such as hypertension and cardiac fibrosis. However, its role in autophagy following M-I/R injury is yet to be fully elucidated. Here, we found that CARD9 expression increased in M-I/R mouse hearts, and in H9c2 or neonatal rat ventricular myocytes (NRVMs) in response to hypoxia/reoxygenation (H/R) or H2O2. CARD9-/- mice exhibited a significant cardiac dysfunction following M-I/R injury (30 min of left ascending coronary (LAD) ischemia and 12 h of reperfusion) compared to wild-type (WT) mice. CARD9 deletion impaired autophagy during M-I/R in vivo and in vitro, evidenced by decrease of microtubule-associated protein 1 light chain 3 (LC3) lipidation and p62 accumulation. Conversely, CARD9 overexpression increased autophagic flux as indicated by enhanced expression of LC3 II/LC3 I and a reduction in p62. The protective effect of CARD9 on cardiomyocytes against H/R-induced oxidative stress was abolished by treatment with autophagy inhibitors, 3-methyladenine (3-MA) or Bafilomycin A1(BafA1). CARD9 interacted with RUN domain Beclin-1-interacting cysteine-rich-containing (Rubicon), a negative regulator of autophagy, and enhanced UV-irradiation-resistance-associated gene (UVRAG)-Beclin1-phosphatidylinositol 3-kinase catalytic subunit type 3 (PI3KC3) interaction and UVRAG-Vps16-mediated Rab7 activation to promote autophagosome formation, maturation, and endocytosis. Ablation of Rubicon by siRNA effectively prevented the detrimental effect of CARD9 knockdown on cardiomyocytes. These results suggest that CARD9 has protective effects on the myocardium against M-I/R injury by activating autophagy and restoring autophagic flux in vivo and in vitro.


Assuntos
Autofagia/fisiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Ratos
17.
J Cell Physiol ; 235(9): 5985-5994, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31975412

RESUMO

Myocardial ischemic preconditioning (IP) is defined as a brief period of myocardial ischemia/reperfusion (I/R) that significantly reduces injury during the subsequent exposure to long-term I/R. However, the underlying mechanisms of myocardial IP are yet to be elucidated. This study investigated the expression and roles of long noncoding RNA (lncRNA) H19 in myocardial IP in vitro and in vivo. LncRNA H19 expression levels were analyzed by quantitative reverse-transcription polymerase chain reaction, cell viability was determined by the Cell Counting Kit-8 assay, apoptosis was evaluated based on the caspase 3 activity, and RNA immunoprecipitation was performed to examine the interaction between lncRNA H19 and nucleolin. The results of this study showed that lncRNA H19 expression was significantly upregulated in mouse hearts subjected to myocardial IP, in rat H9C2 cells exposed to H2 O2 preconditioning (H2 O2 -PC), and in neonatal rat cardiomyocytes subjected to hypoxia preconditioning. H19 knockdown abrogated the H2 O2 -PC-mediated protection in cardiomyocytes evidenced by the decreased cell viability and increased caspase-3 activity. Conversely, H19 overexpression enhanced the protective role of H2 O2 -PC in cardiomyocytes. In addition, H19 overexpression increased the expression of nucleolin, whereas H19 ablation abrogated H2 O2 -PC-induced upregulation of nucleolin in cardiomyocytes. Furthermore, H19 overexpression increased the stabilization of nucleolin; an interaction between H19 and nucleolin was identified using the RNA-protein interaction studies. Furthermore, nucleolin small interfering RNA relieved the protective role of lncRNA H19. These findings demonstrated that the lncRNA H19 is involved in myocardial IP via increasing the stability of nucleolin protein and lncRNA H19 may represent a potential therapeutic target for the treatment of the myocardial injury.


Assuntos
Isquemia Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/genética , Fosfoproteínas/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Apoptose/genética , Sobrevivência Celular/genética , Modelos Animais de Doenças , Humanos , Precondicionamento Isquêmico Miocárdico , Camundongos , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estabilidade Proteica , Ratos , Nucleolina
18.
Shock ; 53(1): 114-123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30829852

RESUMO

Recent evidences suggest that metabolic reprogramming plays an important role in the regulation of innate inflammatory response; however, the specific mechanism is unclear. In this study, we found that glycolytic inhibitor 2-deoxyglucose (2-DG) significantly improved the survival rate in cecal ligation and puncture (CLP)-induced septic mice. 2-DG-treated mice developed increased neutrophil migration to the infectious site and more efficient bacterial clearance than untreated mice. 2-DG reversed the down-regulation of chemokine receptor 2 (CXCR2) and the impaired chemotaxis induced by CLP in mice or lipopolysaccharides (LPS) in human neutrophils. Furthermore, 2-DG reversed the down-regulation of CXCR2 in neutrophils by decreasing the expression of G protein-coupled receptor kinase-2 (GRK2), a serin-threonine protein kinase that mediated the internalization of chemokine receptors, which was induced via the inhibition of extracellular regulated protein kinases (ERK) phosphorylation and the promotion of P38 phosphorylation. Finally, SB225002, a CXCR2 antagonist, partially blocked the protective effects of 2-DG in sepsis. Together, we found a novel mechanism for the migration of neutrophils regulated by metabolism and suggested that aerobic glycolysis might be a potential target of intervention in sepsis.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Neutrófilos/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Desoxiglucose/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Neutrófilos/efeitos dos fármacos , Compostos de Fenilureia/farmacologia
19.
Immunol Cell Biol ; 97(10): 902-915, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472096

RESUMO

Myeloid-derived suppressor cells (MDSCs) are functionally immunosuppressive cells that are persistently increased in abundance and associated with adverse clinical outcomes in sepsis. Here, we investigated the therapeutic potential of an anaplastic lymphoma kinase inhibitor, LDK378, in cecal ligation and puncture (CLP)-induced polymicrobial sepsis and examined its effects on the recruitment of MDSCs. LDK378 significantly improved the survival of CLP-induced polymicrobial septic mice, which was paralleled by reduced organ injury, decreased release of inflammatory cytokines and decreased recruitment of MDSCs to the spleen. Importantly, LDK378 inhibited the migration of MDSCs to the spleen by blocking the CLP-mediated upregulation of CC chemokine receptor 2 (CCR2), a chemokine receptor critical for the recruitment of MDSCs. Mechanistically, LDK378 treatment blocked the CLP-induced CCR2 upregulation of MDSCs via partially inhibiting the phosphorylation of p38 and G-protein-coupled receptor kinase-2 (GRK2) in bone marrow MDSCs of septic mice. Furthermore, in vitro experiments also showed that lipopolysaccharide (LPS)-induced migration of MDSCs was similarly owing to the activation of GRK2 and upregulation of CCR2 by LPS, whereas the treatment with LDK378 partially blocked the LPS-induced phosphorylation of p38 and GRK2 and decreased the expression of CCR2 on the cell surface, therefore leading to the suppression of MDSC migration. Together, these findings unravel a novel function of LDK378 in the host response to infection and suggest that LDK378 could be a potential therapeutic agent for sepsis.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Células Supressoras Mieloides/metabolismo , Pirimidinas/farmacologia , Receptores CCR2/metabolismo , Sepse/metabolismo , Sepse/patologia , Baço/patologia , Sulfonas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ceco/patologia , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Terapia de Imunossupressão , Inflamação/patologia , Ligadura , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos , Células Supressoras Mieloides/efeitos dos fármacos , Punções , Sepse/prevenção & controle , Transdução de Sinais/efeitos dos fármacos
20.
Aging Dis ; 10(4): 746-755, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31440381

RESUMO

Matrix metalloproteinases 9 (MMP9) is a member of the zinc-ion-dependent proteinases family and plays a pathogenic role in chronic inflammatory autoimmune diseases. However, its roles in the pathogenesis of myositis have not been elucidated. In this study, we aimed to determine the gene expression and serum level of MMP9 and their relationship with clinical features and serological parameters in myositis. Our results showed that MMP9 mRNA in peripheral blood mononuclear cells (PBMC) was upregulated in myositis patients compared to that in healthy controls. Myositis patients positive for anti-Jo1 antibodies exhibited significantly higher serum MMP9 than anti-MDA5 positive or antibody-negative patients and healthy controls. However, the presence of interstitial lung disease (ILD) did not affect MMP9 levels. We further identified that anti-Jo1-positive myositis patients showed higher numbers of white blood cells (WBC), lymphocytes and neutrophils; increased levels of creatine kinase (CK), lactate dehydrogenase (LDH), and C-reactive protein (CRP); and higher erythrocyte sedimentation rate (ESR) than anti-MDA5 positive patients. In addition, serum MMP-9 levels were positively correlated with WBCs, neutrophils, CK, CRP, ESR, and LDH in myositis patients. In vitro experiments showed that purified serum IgG from Jo-1-positive patients could stimulate PBMCs to release more MMP9 than the IgG from MDA-5-positive sera. These results indicated that increased MMP9 in anti-Jo1-positive myositis patients was associated with the extent of muscle involvement, but not pulmonary damage. The distinct pattern of serum MMP9 perhaps clarifies the differences in pathophysiology between anti-Jo1 and anti-MDA5 in patients with myositis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...