Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 6871269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915804

RESUMO

Macrophages play an essential role in the pathogenesis of most inflammatory diseases. Recent studies have shown that mechanical load can influence macrophage function, leading to excessive and uncontrolled inflammation and even systemic damage, including cardiovascular disease and knee osteoarthritis. However, the molecular mechanism remains unclear. In this study, murine RAW264.7 cells were treated with mechanical stretch (MS) using the Flexcell-5000T Tension System. The expression of inflammatory factors and cytokine release were measured by RT-qPCR, ELISA, and Western blotting. The protein expression of NF-κB p65, Iκb-α, p-Iκb-α, RhoA, ROCK1, and ROCK2 was also detected by Western blotting. Then, Flow cytometry was used to detect the proportion of macrophage subsets. Meanwhile, Y-27632 dihydrochloride, a ROCK inhibitor, was added to knockdown ROCK signal transduction in cells. Our results demonstrated that MS upregulated mRNA expression and increased the secretion levels of proinflammatory factors iNOS, IL-1ß, TNF-α, and IL-6. Additionally, MS significantly increased the proportion of CD11b+CD86+ and CD11b+CD206+ subsets in RAW264.7 macrophages. Furthermore, the protein expression of RhoA, ROCK1, ROCK2, NF-κB p65, and IκB-α increased in MS-treated RAW264.7 cells, as well as the IL-6 and iNOS. In contrast, ROCK inhibitor significantly blocked the activation of RhoA-ROCK and NF-κB pathway, decreased the protein expression of IL-6 and iNOS, reduced the proportion of CD11b+CD86+ cells subpopulation, and increased the proportion of CD11b+CD206+ cell subpopulation after MS. These data indicate that mechanical stretch can regulate the RAW264.7 macrophage polarization and enhance inflammatory responses in vitro, which may contribute to activation the RhoA-ROCK/NF-κB pathway.


Assuntos
NF-kappa B , Quinases Associadas a rho , Animais , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
3.
Genome Biol ; 16: 263, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26607552

RESUMO

BACKGROUND: Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. RESULTS: Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. CONCLUSIONS: These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning.


Assuntos
Aneuploidia , Encéfalo/metabolismo , Metilação de DNA/genética , Síndrome de Down/genética , Epigênese Genética , Adulto , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Cromossomos Humanos Par 21/genética , Ilhas de CpG/genética , Modelos Animais de Doenças , Síndrome de Down/patologia , Feto , Humanos , Camundongos , Linfócitos T/metabolismo , Linfócitos T/patologia
4.
PLoS One ; 5(6): e11357, 2010 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-20596539

RESUMO

BACKGROUND: Emerging evidence suggests that DNA methylation plays an expansive role in the central nervous system (CNS). Large-scale whole genome DNA methylation profiling of the normal human brain offers tremendous potential in understanding the role of DNA methylation in brain development and function. METHODOLOGY/SIGNIFICANT FINDINGS: Using methylation-sensitive SNP chip analysis (MSNP), we performed whole genome DNA methylation profiling of the prefrontal, occipital, and temporal regions of cerebral cortex, as well as cerebellum. These data provide an unbiased representation of CpG sites comprising 377,509 CpG dinucleotides within both the genic and intergenic euchromatic region of the genome. Our large-scale genome DNA methylation profiling reveals that the prefrontal, occipital, and temporal regions of the cerebral cortex compared to cerebellum have markedly different DNA methylation signatures, with the cerebral cortex being hypermethylated and cerebellum being hypomethylated. Such differences were observed in distinct genomic regions, including genes involved in CNS function. The MSNP data were validated for a subset of these genes, by performing bisulfite cloning and sequencing and confirming that prefrontal, occipital, and temporal cortices are significantly more methylated as compared to the cerebellum. CONCLUSIONS: These findings are consistent with known developmental differences in nucleosome repeat lengths in cerebral and cerebellar cortices, with cerebrum exhibiting shorter repeat lengths than cerebellum. Our observed differences in DNA methylation profiles in these regions underscores the potential role of DNA methylation in chromatin structure and organization in CNS, reflecting functional specialization within cortical regions.


Assuntos
Córtex Cerebral/metabolismo , Metilação de DNA , Genoma Humano , Ilhas de CpG , Humanos
5.
Anal Biochem ; 356(1): 117-24, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16777053

RESUMO

Genome tiling array technology combined with a method for both enrichment and depletion of mismatch-containing cDNA fragments offers a useful approach for detecting coding single nucleotide polymorphisms (cSNPs) and mutations in pooled cDNA samples. Enriched mismatch and perfect match cDNA samples from human primary melanoma cells and normal melanocytes were obtained by selection using mismatch repair thymine DNA glycosylase-bound beads. These cDNA samples were then labeled and hybridized to Encyclopedia of DNA Elements genome tiling arrays. The results revealed that the hybridization intensity values of potential cDNA variation regions of the enriched mismatch samples increased, whereas the hybridization intensity values of corresponding regions of the enriched perfect match samples decreased. Six potential mutations were confirmed by polymerase chain reaction product sequencing, including two novel heterozygous mutations in melanoma cells. We suggest that this strategy should increase the efficiency of both cSNP and mutation detection throughout the entire human genome and decrease the cost and complexity of genomewide analysis of cDNA variations.


Assuntos
Técnicas Genéticas , Mutação , Polimorfismo de Nucleotídeo Único , Pareamento Incorreto de Bases , Sequência de Bases , Linhagem Celular , Análise Mutacional de DNA/métodos , Primers do DNA/genética , DNA Complementar/genética , DNA de Neoplasias/genética , Humanos , Melanócitos/metabolismo , Melanoma/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas
6.
J Biol Chem ; 277(27): 24353-60, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11986316

RESUMO

Induction of cyclin D1 gene transcription by estrogen receptor alpha (ERalpha) plays an important role in estrogen-mediated proliferation. There is no classical estrogen response element in the cyclin D1 promoter, and induction by ERalpha has been mapped to an alternative response element, a cyclic AMP-response element at -57, with possible participation of an activating protein-1 site at -954. The action of ERbeta at the cyclin D1 promoter is unknown, although evidence suggests that ERbeta may inhibit the proliferative action of ERalpha. We examined the response of cyclin D1 promoter constructs by luciferase assay and the response of the endogenous protein by Western blot in HeLa cells transiently expressing ERalpha, ERalphaK206A (a derivative that is superactive at alternative response elements), or ERbeta. In each case, ER activation at the cyclin D1 promoter is mediated by both the cyclic AMP-response element and the activating protein-1 site, which play partly redundant roles. The activation by ERbeta occurs only with antiestrogens. Estrogens, which activate cyclin D1 gene expression with ERalpha, inhibit expression with ERbeta. Strikingly, the presence of ERbeta completely inhibits cyclin D1 gene activation by estrogen and ERalpha or even by estrogen and the superactive ERalphaK206A. The observation of the opposing action and dominance of ERbeta over ERalpha in activation of cyclin D1 gene expression has implications for the postulated role of ERbeta as a modulator of the proliferative effects of estrogen.


Assuntos
Ciclina D1/genética , Regulação da Expressão Gênica/fisiologia , Receptores de Estrogênio/fisiologia , Substituição de Aminoácidos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Genes Reporter , Vetores Genéticos , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutagênese Sítio-Dirigida , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...