Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38723431

RESUMO

The longhorned beetles are key players for the maintenance of biodiversity in the terrestrial ecosystem. As xylophagous cerambycid insects in Coleoptera, the beetles have evolved specialized olfactory and gustatory systems to recognize chemical cues in the surrounding habitats. Despite over 36,000 described species in the Cerambycidae family including a wood-boring pest Pharsalia antennata, only a limited number of them (<1 %) have been characterized regarding their chemical ecology at the molecular level. Here, we surveyed four membrane protein gene families in P. antennata related to chemoreception through transcriptomics, phylogenetics and expression profiling analyses. In total, 144 genes encoding 72 odorant receptors (ORs), 33 gustatory receptors (GRs), 23 ionotropic receptors (IRs), four sensory neuron membrane proteins (SNMPs) and 12 ionotropic glutamate receptors (iGluRs) were harvested from the transcriptome of multiple tissues including antennae and legs of both sexes. The lineage-specific expansion of PantORs possibly implied a diverse range of host plants in this beetle, supporting this correlation between the host range and olfactory receptor repertoire sizes across cerambycid species. Further phylogenetic analysis revealed that Group 2 was contributed mainly to the large OR gene repertoire in P. antennata, representing 18 genes in Group 2A and eight in Group 2B. On the other hand, some key chemosensory genes were identified by applying a phylogenetics approach, such as PantOR21 close to the 2-phenylethanol receptor in Megacyllene caryae, three carbon dioxide GRs and seven Antennal IRs (A-IRs) clades. We also determined sex- and tissue-specific expression profiles of 69 chemosensory genes, revealing the high expression of most PantORs in antennae. Noticeably, 10 sex-biased genes (six PantORs, three PantIRs and PantSNMP1a) were presented in antennae, five sex-biased PantGRs in legs and 39 sex-biased genes (15 PantORs, 13 PantGRs, eight PantIRs and three PantSNMPs) in abdomens. These findings have greatly enhanced our knowledge about the chemical ecology of P. antennata and identify candidate molecular targets for mediating smell and taste of this beetle.


Assuntos
Besouros , Proteínas de Insetos , Filogenia , Animais , Besouros/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Transcriptoma , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Família Multigênica , Antenas de Artrópodes/metabolismo
2.
Pestic Biochem Physiol ; 200: 105810, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582582

RESUMO

Ectropis grisescens (Lepidoptera: Geometridae) is a destructive tea pest in China. Mimesis, characterized by changing body color, is an important trait of E. grisescens larvae. Hence, identifying melanin pathway-related genes may contribute to developing new pest control strategies. In the present study, we cloned Egebony, a gene potentially involved in melanin pigmentation in E. grisescens, and subsequently conducted CRISPR/Cas9-mediated targeted mutagenesis of Egebony to analyze its role in pigmentation and development. At the larvae, prepupae, and pupae stages, Egebony-knockout individuals exhibited darker pigmentation than the wild-type. However, Egebony knockout did not impact the colors of sclerotized appendants, including ocelli, setae, and claws. While mutant pupae could successfully develop into moths, they were unable to emerge from the puparium. Notably, embryo hatchability and larval survival of mutants remained normal. Further investigation indicated that mutant pupae exhibited significantly stronger shearing force than the wild-type, with the pigmented layer of mutant pupae appearing darker and thicker. Collectively, these results suggest that the loss of Egebony might increase the rigidity of the puparium and prevent moth eclosion. This study provides new insights into understanding the function and diversification of ebony in insect development and identifies a lethal gene that can be manipulated for developing effective pest control strategies.


Assuntos
Mariposas , Animais , Mariposas/genética , Melaninas/genética , Sistemas CRISPR-Cas , Larva/genética , Pigmentação/genética
3.
Pestic Biochem Physiol ; 199: 105797, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458690

RESUMO

Antennae and legs (primarily the tarsal segments) of insects are the foremost sensory organs that contact a diverse range of toxic chemicals including insecticides. Binding proteins expressed in the two tissues are potential molecular candidates serving as the binding and sequestering of insecticides, like chemosensory proteins (CSPs). Insect CSPs endowed with multiple roles have been suggested to participate in insecticide resistance, focusing mainly on moths, aphids and mosquitos. Yet, the molecular underpinnings underlying the interactions of cerambycid CSPs and insecticides remain unexplored. Here, we present binding properties of three antenna- and tarsus-enriched RhorCSPs (RhorCSP1, CSP2 and CSP3) in Rhaphuma horsfieldi to eight insecticide classes totaling 15 chemicals. From the transcriptome of this beetle, totally 16 CSP-coding genes were found, with seven full-length sequences. In phylogeny, these RhorCSPs were distributed dispersedly in different clades. Expression profiles revealed the abundant expression of RhorCSP1, CSP2 and CSP3 in antennae and tarsi, thus as representatives for studying the protein-insecticide interactions. Binding assays showed that the three RhorCSPs were tuned differentially to insecticides but exhibited the highest affinities with hexaflumuron, chlorpyrifos and rotenone (dissociation constants <13 µM). In particular, RhorCSP3 could interact strongly with 10 of tested insecticides, of which four residues (Tyr25, Phe42, Val65 and Phe68) contributed significantly to the binding of six, four, three and four ligands, respectively. Of these, the binding of four mutated RhorCSP3s to a botanical insecticide rotenone was significantly weakened compared to the wildtype protein. Furthermore, we also evidenced that RhorCSP3 was a broadly-tuned carrier protein in response to a wide variety of plant odorants outside insecticides. Altogether, our findings shed light on different binding mechanisms and odorant-tuning profiles of three RhorCSPs in R. horsfieldi and identify key residues of the RhorCSP3-insecticide interactions.


Assuntos
Besouros , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Tornozelo , Rotenona , Besouros/genética , Besouros/metabolismo , Insetos/genética , Transcriptoma , Filogenia , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38061252

RESUMO

Three tree-killing bark beetles belonging to the genus Tomicus, Tomicus yunnanensis, Tomicus brevipilosus and Tomicus minor (Coleoptera; Curculionidae, Scolytinae), are serious wood-borers with larvae feeding on the phloem tissues of Pinus yunnanensis. The three Tomicus beetles, in some cases, coexist in a same habitat, providing a best system for exploring the conservation and divergence of reproductive genes. Here, we applied comparative transcriptomics and molecular biology approaches to characterize reproductive-related genes in three sympatric Tomicus species. Illumina sequencing of female and male reproductive systems and residual bodies generated a large number of clean reads, representing 185,920,232 sequences in T. yunnanensis, 169,153,404 in T. brevipilosus and 178,493,176 in T. minor that were assembled into 32,802, 56,912 and 33,670 unigenes, respectively. The majority of the genes had detectable expression in reproductive tissues (FPKM >1), particularly those genes in T. brevipilosus accounting for 76.61 % of the total genes. From the transcriptomes, totally 838 genes encoding 463 detoxification enzymes, 339 chemosensory membrane proteins and 36 ionotropic glutamate receptors (iGluRs) were identified, including 622 reproductive tissue-expressed genes. Of these, members of carboxylesterases (COEs), ionotropic receptors (IRs), sensory neuron membrane proteins (SNMPs) and iGluRs were highly conserved in gene numbers and sequence identities across three Tomicus species. Further, expression profiling analyses revealed a number of genes expressed in reproductive tissues and the diverse expression characteristics in these beetles. The results provide evidence for the conservation and differences of reproductive genes among three sympatric closely related beetles, helping understand their different reproductive strategies and the maximization of the reproductive success.


Assuntos
Besouros , Gorgulhos , Animais , Gorgulhos/genética , Casca de Planta , Besouros/genética , Perfilação da Expressão Gênica , Transcriptoma , Proteínas de Membrana/genética
5.
Pestic Biochem Physiol ; 197: 105678, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072535

RESUMO

The orientation of the oligophagous cone-feeding moth Dioryctria abietella (Lepidoptera: Pyralidae) to host plants primarily relies on olfactory-related proteins, particularly those candidates highly expressed in antennae. Here, through a combination of expression profile, ligand-binding assay, molecular docking and site-directed mutagenesis strategies, we characterized the chemosensory protein (CSP) gene family in D. abietella. Quantitative real-time PCR (qPCR) analyses revealed the detectable expression of all 22 DabiCSPs in the antennae, of which seven genes were significantly enriched in this tissue. In addition, the majority of the genes (19/22 relatives) had the expression in at least one reproductive tissue. In the interactions of four antenna-dominant DabiCSPs and different chemical classes, DabiCSP1 was broadly tuned to 27 plant-derived odors, three man-made insecticides and one herbicide with high affinities (Ki < 6.60 µM). By contrast, three other DabiCSPs (DabiCSP4, CSP6 and CSP17) exhibited a narrow odor binding spectrum, in response to six compounds for each protein. Our mutation analyses combined with molecular docking simulations and binding assays further identified four key residues (Tyr25, Thr26, Ile65 and Val69) in the interactions of DabiCSP1 and ligands, of which binding abilities of this protein to 12, 15, 16 and three compounds were significantly decreased compared to the wildtype protein, respectively. Our study reveals different odor binding spectra of four DabiCSPs enriched in antennae and identifies key residues responsible for the binding of DabiCSP1 and potentially active compounds for the control of this pest.


Assuntos
Mariposas , Humanos , Animais , Simulação de Acoplamento Molecular , Ligantes , Mariposas/metabolismo , Odorantes , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo
6.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068873

RESUMO

Mikania micrantha is a highly invasive vine, and its ability to sexually reproduce is a major obstacle to its eradication. The long-distance dissemination of M. micrantha depends on the distribution of seeds; therefore, inhibiting M. micrantha flowering and seed production is an effective control strategy. The number of blooms of M. micrantha differs at different altitudes (200, 900, and 1300 m). In this study, we used a combination of metabolomics and transcriptomics methods to study the patterns of metabolite accumulation in the flower buds of M. micrantha. Using LC-MS/MS, 658 metabolites were found in the flower buds of M. micrantha at three different altitudes (200, 900, and 1300 m). Flavonoids and phenolic acids were found to be the main differential metabolites, and their concentrations were lower at 900 m than at 200 m and 1300 m, with the concentrations of benzoic acid, ferulic acid, and caffeic acid being the lowest. The biosynthesis pathways for flavonoids and phenolic compounds were significantly enriched for differentially expressed genes (DEGs), according to the results of transcriptome analysis. The production of flavonoid and phenolic acids was strongly linked with the expressions of phenylalanine ammonia-lyase (PAL), caffeoyl-CoA O-methyltransferase (COMT), and 4-coumarate-CoA ligase (4CL), according to the results of the combined transcriptome and metabolome analysis. These genes' roles in the regulation of distinct phenolic acids and flavonoids during M. micrantha bud differentiation are still unknown. This study adds to our understanding of how phenolic acids and flavonoids are regulated in M. micrantha flower buds at various altitudes and identifies regulatory networks that may be involved in this phenomenon, offering a new approach for the prevention and management of M. micrantha.


Assuntos
Mikania , Mikania/genética , Flavonoides , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Flores/genética
7.
BMC Genomics ; 24(1): 339, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340339

RESUMO

BACKGROUND: The plant bug, Pachypeltis micranthus Mu et Liu (Hemiptera: Miridae), is an effective potential biological control agent for Mikania micrantha H.B.K. (Asteraceae; one of the most notorious invasive weeds worldwide). However, limited knowledge about this species hindered its practical application and research. Accordingly, sequencing the genome of this mirid bug holds great significance in controlling M. micrantha. RESULTS: Here, 712.72 Mb high-quality chromosome-level scaffolds of P. micranthus were generated, of which 707.51 Mb (99.27%) of assembled sequences were anchored onto 15 chromosome-level scaffolds with contig N50 of 16.84 Mb. The P. micranthus genome had the highest GC content (42.43%) and the second highest proportion of repetitive sequences (375.82 Mb, 52.73%) than the three other mirid bugs (i.e., Apolygus lucorum, Cyrtorhinus lividipennis, and Nesidiocoris tenuis). Phylogenetic analysis showed that P. micranthus clustered with other mirid bugs and diverged from the common ancestor approximately 200 million years ago. Gene family expansion and/or contraction were analyzed, and significantly expanded gene families associated with P. micranthus feeding and adaptation to M. micrantha were manually identified. Compared with the whole body, transcriptome analysis of the salivary gland revealed that most of the upregulated genes were significantly associated with metabolism pathways and peptidase activity, particularly among cysteine peptidase, serine peptidase, and polygalacturonase; this could be one of the reasons for precisely and highly efficient feeding by the oligophagous bug P. micranthus on M. micrantha. CONCLUSION: Collectively, this work provides a crucial chromosome-level scaffolds resource to study the evolutionary adaptation between mirid bug and their host. It is also helpful in searching for novel environment-friendly biological strategies to control M. micrantha.


Assuntos
Heterópteros , Mikania , Animais , Mikania/genética , Filogenia , Heterópteros/genética , Cromossomos , Peptídeo Hidrolases/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-36801252

RESUMO

In the forest ecosystem dominated by the Pinaceae plants, this boring pest Dioryctria abietella is subject to a variety of odorants derived from host and nonhost plants, in which olfactory-related proteins enriched in antennae are key behavioral modulators for the orientation of feeding and ovipositing hosts. Here, we addressed the odorant binding protein (OBP) gene family in D. abietella. Expression profiles revealed that the majority of OBPs were abundantly expressed in the antennae at a female-biased level. A male-antenna-biased DabiPBP1 was a strong candidate for detecting type I and type II pheromones of D. abitella female moths. Using a prokaryotic expression system combined with affinity chromatography, we harvested two antenna-dominant DabiOBPs. In the ligand-binding assays, the two DabiOBPs exhibited different odorant response spectra, as DabiOBP17 was tuned to most odorants with higher affinities compared to DabiOBP4. Of these, DabiOBP4 could strongly bind syringaldehyde and citral (dissociation constants (Ki) < 14 µM). A floral volatile, benzyl benzoate (Ki = 4.72 ± 0.20 µM), was the best ligand for DabiOBP17. Remarkably, several green leaf volatiles were found to strongly interact with DabiOBP17 (Ki < 8.5 µM), including Z3-hexenyl acetate, E2-hexenol, Z2-hexenal and E2-hexenal that may mediate a repellent response to D. abietella. Structural analyses of ligands revealed that the binding of the two DabiOBPs to odorants was associated with carbon-chain lengths and functional groups. Molecular simulations identified several key residues involved in the interactions of DabiOBPs and ligands, suggesting specific binding mechanisms. This study highlights olfactory roles of two antennal DabiOBPs in D. abietella, helping the identification of potentially behavioral compounds for the population control of this pest.


Assuntos
Mariposas , Receptores Odorantes , Animais , Odorantes , Ligantes , Ecossistema , Hexobarbital/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Florestas , Antenas de Artrópodes/metabolismo
9.
Insects ; 13(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555056

RESUMO

The management of forest pests has become a significant challenge, particularly for wood borers, because they spend most of the time in the trunks or cones. The coneworm, Dioryctria abietella, is a representative of cone borers as its larvae feed on the cones of Pinaceae plants. The molecular mechanisms underlying the interactions between this species and host plants or habitats can assist in developing strategies for pest control. In this study, we extended the expression profiles of 32 odorant binding proteins (OBPs) in the reproductive tissues of D. abietella, revealing the detectable transcription of 29 genes. Using two DabiOBPs highly expressed in antennae (DabiOBP5 and DabiOBP14) as targets, six compounds with high affinities (dissociation constants < 13 µM) were identified through a reverse chemical ecology strategy, including insecticides widely used for the control of lepidopteran pests. Of these compounds, a floral volatile ß-ionone and a pear-produced ester ethyl-(2E,4Z)-decadienoate may serve as behaviorally active compounds in D. abietella. The strong binding of DabiOBPs to insecticides suggested their involvement in insecticide resistance, reflecting sophisticated detoxification mechanisms of this moth. In the molecular simulations, DabiOBP14 possessed stronger interactions with the six ligands compared to DabiOBP5, in which a few key residues within the binding pockets were involved in the formation of hydrogen bonds. This study provides some valuable reference active compounds for the development of lures or repellents in D. abietella and unravels the putative roles of two antenna-dominant DabiOBPs in the perception of plant-derived odorants and insecticides.

10.
Front Physiol ; 13: 1015793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187767

RESUMO

The wood-boring beetles, including the majority of Cerambycidae, have developed the ability to metabolize a variety of toxic compounds derived from host plants and the surrounding environment. However, detoxification mechanisms underlying the evolutionary adaptation of a cerambycid beetle Pharsalia antennata to hosts and habitats are largely unexplored. Here, we characterized three key gene families in relation to detoxification (cytochrome P450 monooxygenases: P450s, carboxylesterases: COEs and glutathione-S-transferases: GSTs), by combinations of transcriptomics, gene identification, phylogenetics and expression profiles. Illumina sequencing generated 668,701,566 filtered reads in 12 tissues of P. antennata, summing to 100.28 gigabases data. From the transcriptome, 215 genes encoding 106 P450s, 77 COEs and 32 GSTs were identified, of which 107 relatives were differentially expressed genes. Of the identified 215 genes, a number of relatives showed the orthology to those in Anoplophora glabripennis, revealing 1:1 relationships in 94 phylogenetic clades. In the trees, P. antennata detoxification genes mainly clustered into one or two subfamilies, including 64 P450s in the CYP3 clan, 33 COEs in clade A, and 20 GSTs in Delta and Epsilon subclasses. Combining transcriptomic data and PCR approaches, the numbers of detoxification genes expressed in abdomens, antennae and legs were 188, 148 and 141, respectively. Notably, some genes exhibited significantly sex-biased levels in antennae or legs of both sexes. The findings provide valuable reference resources for further exploring xenobiotics metabolism and odorant detection in P. antennata.

11.
Insects ; 13(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36135480

RESUMO

The chemical interactions of insects and host plants are shaping the evolution of chemosensory receptor gene families. However, the correlation between host range and chemoreceptor gene repertoire sizes is still elusive in Papilionidae. Here, we addressed the issue of whether host plant diversities are correlated with the expansions of odorant (ORs) or gustatory (GRs) receptors in six Papilio butterflies. By combining genomics, transcriptomics and bioinformatics approaches, 381 ORs and 328 GRs were annotated in the genomes of a generalist P. glaucus and five specialists, P. xuthus, P. polytes, P. memnon, P. machaon and P. dardanus. Orthologous ORs or GRs in Papilio had highly conserved gene structure. Five Papilio specialists exhibited a similar frequency of intron lengths for ORs or GRs, but which was different from those in the generalist. Phylogenetic analysis revealed 60 orthologous OR groups, 45 of which shared one-to-one relationships. Such a single gene in each butterfly also occurred in 26 GR groups. Intriguingly, bitter GRs had fewer introns than other GRs and clustered into a large clade. Focusing on the two chemoreceptor gene families in P. xuthus, most PxutORs (52/58) were expressed in antennae and 31 genes in reproductive tissues. Eleven out of 28 foretarsus-expressed PxutGRs were female-biased genes, as strong candidates for sensing oviposition stimulants. These results indicate that the host range may not shape the large-scale expansions of ORs and GRs in Papilio butterflies and identify important molecular targets involved in olfaction, oviposition or reproduction in P. xuthus.

12.
J Agric Food Chem ; 70(35): 10747-10761, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36002911

RESUMO

In this study, we annotated 49 odorant-binding proteins (OBPs) in Papilio xuthus, with four novel genes and seven improved sequences. Expression profiles identified numerous OBPs in antennae or reproductive tissues. Using two antenna-enriched general OBPs (PxutGOBP1 and PxutGOBP2) as targets, we screened three key compounds by a reverse chemical ecology strategy. Of these, an oviposition stimulant vicenin-2 could strongly interact with PxutGOBP1, representing a dissociation constant (Ki) value of 10.34 ± 0.07 µM. Molecular simulations and site-directed mutagenesis revealed the importance of His66, Thr73, and Phe118 between PxutGOBP1 and vicenin-2 interactions. Two other compounds, an ordinary floral scent ß-ionone and a widely used insecticide chlorpyrifos, exhibited high affinities to PxutGOBPs (Ki < 13 µM). Furthermore, two mutations His66Ala and Thr73Ala of PxutGOBP1 significantly reduced the binding to chlorpyrifos. Our study provides insights into the putative roles of PxutGOBPs in odorant perception and identifies key binding sites of PxutGOBP1 to vicenin-2 and chlorpyrifos.


Assuntos
Borboletas , Clorpirifos , Inseticidas , Receptores Odorantes , Animais , Feminino , Proteínas de Insetos/metabolismo , Odorantes , Percepção , Receptores Odorantes/metabolismo
14.
Front Genet ; 12: 728418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777464

RESUMO

A high-quality genome is of significant value when seeking to control forest pests such as Dendrolimus kikuchii, a destructive member of the order Lepidoptera that is widespread in China. Herein, a high quality, chromosome-level reference genome for D. kikuchii based on Nanopore, Pacbio HiFi sequencing and the Hi-C capture system is presented. Overall, a final genome assembly of 705.51 Mb with contig and scaffold N50 values of 20.89 and 24.73 Mb, respectively, was obtained. Of these contigs, 95.89% had unique locations on 29 chromosomes. In silico analysis revealed that the genome contained 15,323 protein-coding genes and 63.44% repetitive sequences. Phylogenetic analyses indicated that D. kikuchii may diverged from the common ancestor of Thaumetopoea. Pityocampa, Thaumetopoea ni, Heliothis virescens, Hyphantria armigera, Spodoptera frugiperda, and Spodoptera litura approximately 122.05 million years ago. Many gene families were expanded in the D. kikuchii genome, particularly those of the Toll and IMD signaling pathway, which included 10 genes in peptidoglycan recognition protein, 19 genes in MODSP, and 11 genes in Toll. The findings from this study will help to elucidate the mechanisms involved in protection of D. kikuchii against foreign substances and pathogens, and may highlight a potential channel to control this pest.

15.
Insects ; 12(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34564227

RESUMO

This study characterized the transcriptome of Cacia cretifera thibetana and explored odorant binding proteins (OBPs) and their interaction with host-specific compounds. A total of 36 samples from six different organs including antennae, head, thorax, abdomen, wings, and legs (12 groups with 3 replicates per group) from both male and female insects were collected for RNA extraction. Transcriptomic analysis revealed a total of 89,897 transcripts as unigenes, with an average length of 1036 bp. Between male and female groups, 31,095 transcripts were identified as differentially expressed genes (DEGs). The KEGG pathway analysis revealed 26 DEGs associated with cutin, suberine, and wax biosynthesis and 70, 48, and 62 were linked to glycerophospholipid metabolism, choline metabolism in cancer, and chemokine signaling pathways, respectively. A total of 31 OBP genes were identified. Among them, the relative expression of 11 OBP genes (OBP6, 10, 12, 14, 17, 20, 22, 26, 28, 30, and 31) was confirmed by quantitative RT-PCR in different tissues. Seven OBP genes including CcreOBP6 and CcreOBP10 revealed antennae-specific expression. Further, we selected two OBPs (CcreOBP6 and CcreOBP10) for functional analysis to evaluate their binding affinity with 20 host odorant compounds. The CcreOBP6 and CcreOBP10 exhibited strong binding affinities with terpineol and trans-2-hexenal revealing their potential as an attractant or repellent for controlling C. cretifera thibetana.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34246924

RESUMO

During the past decade, antennal transcriptome sequencing has been applied to at least 50 species from 16 families of the Lepidoptera order of insects, emphasizing the identification and characterization of chemosensory-related genes. However, little is known about the chemosensory genes in the Zygaenidae family of Lepidoptera. Herein, we report the transmembrane protein gene repertoires involved in chemoreception from Achelura yunnanensis (Lepidoptera: Zygaenidae) through transcriptome sequencing, bioinformatics, phylogenetics and polymerase chain reaction (PCR) approaches. Transcriptome analysis led to the generation of 555.47 million clean reads and accumulation of 83.30 gigabases of data. From this transcriptome, 132 transcripts encoding 69 odorant receptors (ORs), 33 gustatory receptors (GRs), 26 ionotropic receptors (IRs), and four sensory neuron membrane proteins (SNMPs) were identified, 69 of which were full-length sequences. Notably, the number of SNMPs in A. yunnanensis was the largest set in Lepidoptera to date. Phylogenetic analysis combined with sequence homology highlighted several conserved groups of chemoreceptors, including pheromone receptors (a so-called pheromone receptor (PR) clade: AyunOR50 and novel PR members: AyunOR39 and OR40), a phenylacetaldehyde-sensing OR (AyunOR28), carbon dioxide receptors (AyunGR1-3), and antennal IRs (13 A-IRs). In addition, a Zygaenidae-specific OR expansion was observed, including 15 A. yunnanensis members. Expression profiles revealed 99 detectable chemosensory genes in the antennae and 20 in the reproductive tissues, some of which displayed a sex-biased expression. This study identifies potential olfactory molecular candidates for sensing sex pheromones, phenylacetaldehyde or other odorants, and provides preliminary evidence for the putative reproductive function of chemosensory membrane protein genes in A. yunnanensis.


Assuntos
Lepidópteros , Receptores Odorantes , Animais , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lepidópteros/genética , Lepidópteros/metabolismo , Filogenia , Receptores Odorantes/genética , Transcriptoma
17.
Genomics ; 113(4): 1876-1894, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839272

RESUMO

The common cutworm, Spodoptera litura, is a polyandrous moth with high reproductive ability. Sexual reproduction is a unique strategy for survival and reproduction of population in this species. However, to date available information about its reproductive genes is rare. Here, we combined transcriptomics, genomics and proteomics approaches to characterize reproductive-related proteins in S. litura. Illumina sequencing in parallel with the reference genome led to the yields of 12,161 reproductive genes, representing 47.83% of genes annotated in the genome. Further, 524 genes of 19 specific gene families annotated in the genome were detected in reproductive tissues of both sexes, some of which exhibited sex-biased and/or tissue-enriched expression. Of these, manual efforts together with the transcriptome analyses re-annotated 54 odorant binding proteins (OBPs) and 23 chemosensory proteins (CSPs) with an increase of 18 OBPs and one CSP compared to those previously annotated in the genome. Interestingly, at least 35 OBPs and 22 CSPs were transcribed in at least one reproductive tissue, suggestive of their involvement in reproduction. Further proteomic analysis revealed 2381 common proteins between virgin and mated female reproductive systems, 79 of which were differentially expressed. More importantly, 74 proteins exclusive to mated females were identified as transferred relatives, coupled with their specific or high expression in male reproductive systems. Of the transferred proteins, several conserved protein classes across insects were observed including OBPs, serpins, trypsins and juvenile hormone-binding proteins. Our current study has extensively surveyed reproductive genes in S. litura with an emphasis on the roles of OBPs and CSPs in reproduction, and identifies potentially transferred proteins serving as modulators of female post-mating behaviors.


Assuntos
Receptores Odorantes , Transcriptoma , Animais , Feminino , Perfilação da Expressão Gênica , Genômica , Proteínas de Insetos/metabolismo , Masculino , Proteômica , Receptores Odorantes/genética , Reprodução/genética , Spodoptera/genética , Spodoptera/metabolismo
18.
Genomics ; 113(3): 964-975, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33610796

RESUMO

Effective and complete control of the invasive weed Mikania micrantha is required to avoid increasing damages. We exogenously applied indole 3-acetic acid (IAA), gibberellin (GA), and N-(2-Chloro-4-pyridyl)-N'-phenylurea (CPPU), and their combinations i.e. IAA + CPPU (IC), GA + CPPU (GC), and GA + IAA + CPPU (GIC), at 5, 10, 25, 50, and 75 ppm against distilled water as a control (CK), to examine their effects on the weed. The increasing concentrations of these hormones when applied alone or in combination were fatal to M. micrantha and led towards the death of inflorescences and/or florets. CPPU and GIC were found as the most effective phytohormones. Transcriptome analysis revealed differential regulation of genes in auxin, cytokinin, gibberellin and abscisic acid signaling pathways, suggesting their role in the prohibition of axillary bud differentiation. Collectively, CPPU and GIC at a high concentration (75 ppm) could be used as a control measure to protect forests and other lands from the invasion of M. micrantha.


Assuntos
Mikania , Perfilação da Expressão Gênica , Giberelinas/farmacologia , Mikania/genética , Mikania/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Daninhas/genética , Plantas Daninhas/metabolismo
19.
Insects ; 13(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35055872

RESUMO

Chemosensory proteins (CSPs) are a family of small, soluble proteins that play a crucial role in transporting odorant and pheromone molecules in the insect chemosensory system. Recent studies reveal that they also function in development, nutrient metabolism and insecticide resistance. In-depth and systematic characterization of previously unknown CSPs will be valuable to investigate more detailed functionalities of this protein family. Here, we identified 27 CSP genes from the genome and transcriptome sequences of cotton bollworm, Helicoverpa armigera (Hübner). The expression patterns of these genes were studied by using transcriptomic data obtained from different tissues and stages. The results demonstrate that H. armigera CSP genes are not only highly expressed in chemosensory tissues, such as antennae, mouthparts, and tarsi, but also in the salivary glands, cuticle epidermis, and hind gut. HarmCSP6 and 22 were selected as candidate CSPs for expression in Escherichia coli and purification. A new method was developed that significantly increased the HarmCSP6 and 22 expression levels as soluble recombinant proteins for purification. This study advances our understanding of insect CSPs and provides a new approach to highly express recombinant CSPs in E. coli.

20.
PeerJ ; 9: e12641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993022

RESUMO

In most moth species, sex pheromones responsible for mating and communication of both sexes are primarily produced by the pheromone glands (PGs) of female moths. Although the PG transcriptomes and pheromone production related genes from 24 moth species have been characterized, studies on the related information remain unknown in the Zygaenidae family. Here, we sequenced the PG transcriptome of a zygaenid moth, Achelura yunnanensis. Such the sequencing resulted in the yields of 47,632,610 clean reads that were assembled into 54,297 unigenes, coupled with RNA sequencing data from 12 other tissues. Based on the transcriptome, a total of 191 genes encoding pheromone biosynthesis and degradation enzymes were identified, 161 of which were predicted to have full-length sequences. A comparative analysis among 24 moth species of nine families indicated that the numbers of the genes were variable, ranging from 14 in two Grapholita species to 191 in A. yunnanensis. Phylogenetic analysis in parallel with the expression data highlighted some key genes, including three △9 and four △11 desaturases, four fatty acyl-CoA reductases (FARs) clustering in the pgFAR clade, and three significantly antennae-enriched aldehyde oxidases. An extensive tissue- and sex- expression profile revealed a broad distribution of the genes, in which 128 relatives were detected in the PGs and 127 in the antennae. This study reports, for the first time, the gene repertoires associated with the pheromone production in Zygaenidae, and provides a valuable resource for exploring putative roles of the PG-enriched genes in A. yunnanensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...