Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 585: 459-469, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33268060

RESUMO

Novel energy material is the investigation focus to overcome the environment pollution and resource shortage crisis. TiO2 nanotube arrays (TiO2 NTA) could be used for pollutant decomposition, photoelectric conversion and H2, CH4 generation. BiOBr nanosheets were fabricated on TiO2 NTA by a solvothermal deposition method, and then transformed into Bi2S3 nanosheets after the ion exchange reaction. The results revealed that the ion concentration significantly influenced the morphology, microstructure, optical harvesting and photoelectrochemical capacity of Bi2S3-BiOBr/TiO2 NTA. The samples also exhibited high photocatalytic activity for the removal of dyes and Cr(VI), and the excellent photocurrent and photovoltage were obtained under visible light irradiation. The photocatalytic water splitting for hydrogen generation was carried out, and the photocatalytic hydrogen production rate achieved 17.26 µmol·cm-2·h-1. The photocatalyst showed the remarkable stability, and the photocatalytic ability still maintained high level after several repeated photocatalytic cycles. The photocatalytic data indicated that the Bi2S3-BiOBr/TiO2 NTA photocatalyst provided a perfect strategy for the sensitizer deposition on TiO2 NTA and novel approach for the photocatalytic performance improvement.

2.
ACS Appl Mater Interfaces ; 9(41): 36017-36025, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28937733

RESUMO

High-performance transparent and flexible triboelectric nanogenerators (TENGs) based on graphene composite electrodes via surface engineering are proposed and demonstrated. Through modifying the CVD-grown graphene with the conductive polymer poly(3,4-ethylenedioxy-thiophene):polystyrenesulfonate (PEDOT:PSS), composite electrodes with excellent optoelectronic performances were fabricated, which exhibited a high transmittance up to 83.5% and sheet resistance of 85 Ω/□, decreasing from the initial value of 725 Ω/□. As a consequence, the output current density and power of the corresponding TENG were enhanced by 140% to 2.4 µA/cm2 and by 118% to 12 µW, respectively, comparing with the counterpart composed of the pristine graphene electrodes. Furthermore, the composite electrode exhibited an outstanding durability of the physical and electrical characteristics after 10 000 bending cycles and can be readily extended to a large area up to 100 cm2. Such flexible, transparent, stable TENGs pave the way for the application of self-powered body sensors due to their unique characteristics, such as portability, wearability, and human compatibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...