Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124806, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178879

RESUMO

Glucose oxidase (GOx) has a great application potential in the determination of glucose concentration. However, its sensitivity to the environment and poor recyclability limited its broader application. Herein, with the assistance of DA-PEG-DA, a novel immobilized GOx based on amorphous Zn-MOFs (DA-PEG-DA/GOx@aZIF-7/PDA) was developed to impart excellent properties to the enzyme. SEM, TEM, XRD, and BET analyses confirmed that GOx was embedded in amorphous ZIF-7 with ∼5 wt% loading. Compared with free GOx, DA-PEG-DA/GOx@aZIF-7/PDA exhibited enhanced stability, excellent reusability, and promising potential for glucose detection. After 10 repetitions, the catalytic activity of DA-PEG-DA/GOx@aZIF-7/PDA can maintain 95.53 % ± 3.16 %. In understanding the in situ embedding of GOx in ZIF-7, the interaction of zinc ion and benzimidazole with GOx was studied by using molecular docking and multi-spectral methods. Results showed that zinc ions and benzimidazole had multiple binding sites on the enzyme, which induced the accelerated synthesis of ZIF-7 around the enzyme. During binding, the structure of the enzyme changes, but such changes hardly affect the activity of the enzyme. This study provides not only a preparation strategy of immobilized enzyme with high activity, high stability, and low enzyme leakage rate for glucose detection, but also a more comprehensive understanding of the formation of immobilized enzymes using the in situ embedding strategy.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose Oxidase/química , Simulação de Acoplamento Molecular , Enzimas Imobilizadas/química , Zinco , Glucose/análise , Técnicas Biossensoriais/métodos
2.
Molecules ; 28(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049880

RESUMO

Immobilized angiotensin-converting enzyme (ACE) is a promising material for the rapid screening of antihypertensive drugs, but the nonspecific adsorption is a serious problem in separation processes involving complex biological products. In this study, triblock copolymers with dopamine (DA) block as anchors and PEG block as the main body (DA-PEGx-DA) were attached to an immobilized ACE (ACE@mZIF-8/PDA, AmZP) surface via the "grafting to" strategy which endowed them with anti-nonspecific adsorption. The influence of DA-PEGx-DA chain length on nonspecific adsorption was confirmed. The excellent specificity and reusability of the obtained ACE@mZIF-8/PDA/DA-PEG5000-DA (AmZPP5000) was validated by screening two known ACE inhibitory peptides Val-Pro-Pro (VPP, competitive inhibitory peptides of ACE) and Gly-Met-Lys-Cys-Ala-Phe (GF-6, noncompetitive inhibitory peptides of ACE) from a mixture containing active and inactive compounds. These results demonstrate that anchored polymer loops are effective for high-recognition selectivity and AmZPP5000 is a promising compound for the efficient separation of ACE inhibitors in biological samples.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptídeos , Peptídeos/farmacologia , Peptídeos/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Anti-Hipertensivos/química , Peptidil Dipeptidase A , Angiotensinas
3.
J Hazard Mater ; 423(Pt B): 127137, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34560486

RESUMO

Most natural polymers exhibit limited functional groups, which is not favourable for the adsorption of various ions and their utilisation. To overcome this drawback, a novel in-situ-doped nano-calcium carbonate (CaCO3) chitin hydrogel was synthesised as an efficient adsorbent for Cu (II) and Cd (II) ions. Scanning electron microscopy and Brunauer-Emmett-Teller results revealed that the synthesised CaCO3/chitin hydrogel exhibited loose macropores and mesopores. Subsequently, Fourier transform infrared, Raman, and X-ray diffraction characterisation characterisation proved that chitin was successfully doped with nano-CaCO3. The mechanical properties of CaCO3/chitin hydrogel were superior to those of the unmodified chitin hydrogel and could efficiently adsorb Cu (II) and Cd (II) ions in water. The effect of pH, initial concentration, adsorbent dosage, and temperature was assessed to determine the adsorption properties of the hydrogel. Under suitable experimental conditions, the maximum adsorption rate of the CaCO3/chitin hydrogel was approximately 96%. The time-dependent adsorption kinetics followed a quasi-second order model, and the adsorption process followed the Langmuir model. The maximum adsorption capacities of Cu (II) and Cd (II) according to the Langmuir curve were 194.61 and 191.58 mg/g, respectively. Compared with the binary competitive system, the material exhibited a specific selectivity to the adsorption of Cu (II). X-ray photoelectron spectroscopy (XPS) revealed that nitrogen and oxygen atoms were involved in chelation with the metal ions. The successful compounding of calcium carbonate nanoparticles provided more active adsorption sites for the gel. The novel material exhibited excellent adsorption effects on Cu (II) and Cd (II) ions when applied to a water sample. Thus, the novel material exhibits excellent potential for application. The Cu (II) and Cd (II)ion removal efficiencies after five successive adsorption cycles were higher than 90%, which indicated that the composite material exhibited excellent stability and reproducibility.


Assuntos
Cádmio , Poluentes Químicos da Água , Adsorção , Carbonato de Cálcio , Quitina , Cobre , Hidrogéis , Concentração de Íons de Hidrogênio , Íons , Cinética , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise
4.
Artigo em Inglês | MEDLINE | ID: mdl-32172172

RESUMO

Purification of small bioactive peptides from complex biological samples is a difficult task due to the interference of concentrated large biomolecules. In this study, a magnetic immobilized metal affinity chromatography matrix modified by poly (ethylene glycol) methyl ether (IMACM@mPEG) was prepared and applied for the rapid purification of angiotensin I-converting enzyme (ACE) inhibitory peptides from casein hydrolysate. The proposed IMACM@mPEG considerably reduced the non-specific adsorption of large proteins and exhibited improved purification efficiency towards ACE inhibitory peptides. A novel peptide with moderate ACE inhibitory activity (IC50 value of 274 ± 5 µM) was identified as LLYQEPVLGPVR. Lineweaver-Burk plot confirmed the non-competitive inhibition pattern of LLYQEPVLGPVR. The purified peptide was digested after simulated gastrointestinal digestion and produced shorter peptides which contributed to enhanced ACE inhibitory activity. These results indicated that the IMACM@mPEG is an effective method for the prepurification of ACE inhibitory peptide and the purified peptide LLYQEPVLGPVR may have potential as nutraceutical ingredient in functional foods for hypertension treatments.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Caseínas/química , Cromatografia de Afinidade/métodos , Éteres/química , Peptídeos/isolamento & purificação , Polietilenoglicóis/química , Adsorção , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Cobre/química , Óxido Ferroso-Férrico/química , Microesferas , Peptídeos/análise , Peptídeos/metabolismo , Hidrolisados de Proteína , Dióxido de Silício/metabolismo , Propriedades de Superfície
5.
Mar Drugs ; 17(8)2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398788

RESUMO

Angiotensin-I-converting enzyme (ACE) inhibitory peptides derived from natural products have shown a blood pressure lowering effect with no side effects. In this study, two novel ACE inhibitory peptides (His-Leu-His-Thr, HLHT and Gly-Trp-Ala, GWA) were purified from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate with alkaline protease by ultrafiltration, polyethylene glycol methyl ether modified immobilized metal ion affinity medium, and reverse-phase high performance liquid chromatography. Both peptides exhibited high ACE inhibitory activity with IC50 values of 458.06 ± 3.24 µM and 109.25 ± 1.45 µM, respectively. Based on the results of a Lineweaver-Burk plot, HLHT and GWA were found to be non-competitive inhibitor and competitive inhibitor respectively, which were confirmed by molecular docking. Furthermore, the pearl oyster meat protein hydrolysate exhibited an effective antihypertensive effect on SD rats. These results conclude that pearl oyster meat protein is a potential resource of ACE inhibitory peptides and the purified peptides, HLHT and GWA, can be exploited as functional food ingredients against hypertension.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Pinctada/química , Hidrolisados de Proteína/química , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Hipertensão/tratamento farmacológico , Masculino , Carne , Simulação de Acoplamento Molecular , Pinctada/metabolismo , Hidrolisados de Proteína/metabolismo , Ratos , Ratos Sprague-Dawley , Ultrafiltração/métodos
6.
J Mater Chem B ; 5(46): 9211-9218, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-32264604

RESUMO

N-doped hollow porous carbon materials have attracted significant scientific interest in the field of peptide adsorption, drug delivery and catalysis. However, their facile synthesis is still a challenge due to the lack of an ideal template and effective route for high specific surface area (SSA). In this work, we report a facile approach for preparing N-doped hollow porous carbon whiskers (HPCWs) by using CaCO3 whiskers as a green template and double inner-activating agent. Two inner activators, CO2 and Ca(OH)2, are generated from the CaCO3 whisker template during the carbonization process. Among them, Ca(OH)2 was formed by H2O vapors reacting with the remaining template CaO. Attributed to the drastic synergistic effect of inner-activation (CO2 or Ca(OH)2) and outer-activation (KOH), the synthesized HPCWs exhibit ultrahigh SSA (3007 m2 g-1), the largest pore volume (2.63 cm3 g-1) and a controllable proportion of micropores (Sm/St, 60-86%). These intriguing pore structure characteristics of HPCWs endow with them rich target-oriented applications, as exemplified by their outstanding adsorption for casein hydrolysate (10 080 mg g-1), which is two orders of magnitude (102) higher than that of common porous materials. This facile and green synthesis strategy may pave a new way to prepare hollow porous carbon materials with the desired pore structure and high surface area for numerous applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...