Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Genet ; 15: 1260247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988836

RESUMO

Backgrounds: Current observational investigations hint at a potential linkage between ankylosing spondylitis and cardiovascular wellness. However, the nature of this causality remains to be elucidated. Consequently, this study is designed to evaluate the causal interconnection between ankylosing spondylitis and cardiovascular-related conditions utilizing a bidirectional two-sample Mendelian Randomization (MR) methodology. Methods: In this study, we conducted Mendelian randomization (MR) analyses using genome-wide association study (GWAS) data. The fixed-effects inverse variance weighted (IVW) model was used as the primary analysis method, and MR-Egger regression and the weighted median method were employed as supplementary approaches. Horizontal pleiotropy and heterogeneity were evaluated using various statistical tests, including MR-PRESSO global test, MR-Egger intercept, and Cochran's Q test. Results: The MR result demonstrated an increased risk of heart failure in individuals with ankylosing spondylitis (OR: 1.0132, 95% CI = 1.0043-1.0221, p = 0.003). The MR analysis results did not demonstrate a causal relationship between ankylosing spondylitis and other cardiovascular diseases, such as atrial fibrillation, coronary artery disease, ischemic stroke, myocardial infarction, and valvular heart disease (all p > 0.05). No evidence of reverse causality was found between ankylosing spondylitis and mentioned cardiovascular diseases in reverse MR analyses. Sensitivity analysis verified the reliability of the results. Conclusion: Our MR study indicates a relationship between ankylosing spondylitis and an increased risk of heart failure. Further research is needed to confirm these findings and elucidate the underlying mechanisms involved.

2.
Food Chem X ; 22: 101500, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855093

RESUMO

This study aimed to valorize pawpaw (Carica papaya L.) leaves as a rich source of polyphenols through the application of ionic liquid-based microwave-assisted extraction (ILMAE). Initially, the ILMAE process was optimized using response surface methodology (RSM), resulting in a total polyphenols yield of 27.84 ± 0.33 mg GAE/g DW under the optimal conditions: [BMIM]Br concentration of 0.57 mol/L, extraction time of 14 min, microwave power of 460 W, extraction temperature of 77 °C, solvent-to-material ratio of 30 mL/g, and three extraction cycles. Compared to conventional methods such as maceration extraction (ME), heat reflux extraction (HRE), and microwave-assisted extraction (MAE), the ILMAE method exhibited a significantly higher PLTP yield. Furthermore, the PLTP extracts demonstrated strong antioxidant activity against DPPH• and ABTS+• radicals, as well as a significant inhibitory effect on α-glucosidase activity. This work demonstrates that ILMAE is a green and efficient strategy for the valorization of pawpaw leaves.

3.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559160

RESUMO

Infection with the helminth Schistosoma mansoni can cause exacerbated morbidity and mortality via a pathogenic host CD4 T cell-mediated immune response directed against parasite egg antigens, with T helper (Th) 17 cells playing a major role in the development of severe granulomatous hepatic immunopathology. The role of inflammasomes in intensifying disease has been reported; however, neither the types of caspases and inflammasomes involved, nor their impact on the Th17 response are known. Here we show that enhanced egg-induced IL-1ß secretion and pyroptotic cell death required both caspase-1 and caspase-8 as well as NLRP3 and AIM2 inflammasome activation. Schistosome genomic DNA activated AIM2, whereas reactive oxygen species, potassium efflux and cathepsin B, were the major activators of NLRP3. NLRP3 and AIM2 deficiency led to a significant reduction in pathogenic Th17 responses, suggesting their crucial and non-redundant role in promoting inflammation. Additionally, we show that NLRP3- and AIM2-induced IL-1ß suppressed IL-4 and protective Type I IFN (IFN-I) production, which further enhanced inflammation. IFN-I signaling also curbed inflammasome- mediated IL-1ß production suggesting that these two antagonistic pathways shape the severity of disease. Lastly, Gasdermin D (Gsdmd) deficiency resulted in a marked decrease in egg-induced granulomatous inflammation. Our findings establish NLRP3/AIM2-Gsdmd axis as a central inducer of pathogenic Th17 responses which is counteracted by IFN-I pathway in schistosomiasis.

4.
Bioorg Chem ; 146: 107301, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522392

RESUMO

In this study, the chemical composition and pharmacological activity of Croton lauioides were investigated for the first time. The bioactive and HPLC-UV guided isolation led to the discovery of twenty-three conjugated enone-type components (1-23), including nine previously unknown sesquiterpenoid derivatives (1-4, 9-10, 12-14). Notably, compounds 1 and 12 are epoxides containing an endoperoxide bridge (1) or a unique dioxaspiro core (12), respectively. Compounds 2-7 are non-benzenoid aromatics featuring a tropone function, while 9-11 possess a rare rearranged scaffold with tropone shift into benzene. Extensive characterization was performed using NMR spectra, HRESIMS data, and electronic circular dichroism (ECD) calculations. Furthermore, we evaluated the bioactivities of all isolated compounds against neuroinflammation in LPS-stimulated BV-2 microglial cells. Remarkably, most sesquiterpenoid derivatives exhibited significant NO inhibit activities, and compound 5 showed the most potent effect with an IC50 value of 0.14 ± 0.04 µM. Structure-activity relationship (SAR) analysis revealed that sesquiterpenoids modified with endocyclic enone conjugation may serve as a key pharmacophore for NO inhibition, particularly involving aromatic tropone moiety. The qPCR and Western blot results demonstrated that 5 exerted an inhibitory effect on the mRNA levels of iNOS, TNF-α and COX-2 in a time-dependent manner, as well as suppressed the protein expression of iNOS, TNF-α, COX-2. In mechanism, 5 could prevented activation of NF-κB pathway by suppressing phosphorylation of p65 and IκB-α. These findings revealed C. lauioides might be a promising resource for drug candidate development targeting neuroinflammation.


Assuntos
Croton , Sesquiterpenos , Tropolona/análogos & derivados , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias , Ciclo-Oxigenase 2/metabolismo , Sesquiterpenos/farmacologia , Lipopolissacarídeos/farmacologia
5.
Nat Commun ; 15(1): 1749, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409130

RESUMO

The copper (Cu)-catalyzed electrochemical CO2 reduction provides a route for the synthesis of multicarbon (C2+) products. However, the thermodynamically favorable Cu surface (i.e. Cu(111)) energetically favors single-carbon production, leading to low energy efficiency and low production rates for C2+ products. Here we introduce in situ copper faceting from electrochemical reduction to enable preferential exposure of Cu(100) facets. During the precatalyst evolution, a phosphate ligand slows the reduction of Cu and assists the generation and co-adsorption of CO and hydroxide ions, steering the surface reconstruction to Cu (100). The resulting Cu catalyst enables current densities of > 500 mA cm-2 and Faradaic efficiencies of >83% towards C2+ products from both CO2 reduction and CO reduction. When run at 500 mA cm-2 for 150 hours, the catalyst maintains a 37% full-cell energy efficiency and a 95% single-pass carbon efficiency throughout.

6.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335925

RESUMO

Wearable and flexible ß-Ga2O3-based semiconductor devices have attracted considerable attention, due to their outstanding performance and potential application in real-time optoelectronic monitoring and sensing. However, the unavailability of high-quality crystalline and flexible ß-Ga2O3 membranes limits the fabrication of relevant devices. Here, through lattice epitaxy engineering together with the freestanding method, we demonstrate the preparation of a robust bending-resistant and crystalline ß-Ga2O3 (-201) membrane. Based on this, we fabricate a flexible ß-Ga2O3 photodetector device that shows comparable performance in photocurrent responsivity and spectral selectivity to conventional rigid ß-Ga2O3 film-based devices. Moreover, based on the transferred ß-Ga2O3 membrane on a silicon wafer, the PEDOT:PSS/ß-Ga2O3 p-n heterojunction device with self-powered characteristic was constructed, further demonstrating its superior heterogeneous integration ability with other functional materials. Our results not only demonstrate the feasibility of obtaining a high-quality crystalline and flexible ß-Ga2O3 membrane for an integrated device but also provide a pathway to realize flexible optical and electronic applications for other semiconducting materials.

7.
J Orthop Surg Res ; 19(1): 86, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254108

RESUMO

OBJECTIVE: Meta-analysis of the comparative efficacy of Oxford unicompartmental knee arthroplasty (OUKA) for the treatment of spontaneous osteonecrosis of the knee (SONK) and medial knee osteoarthritis (MKOA). METHODS: A computerized search was conducted for literature related to OUKA treatments of SONK and MKOA across various databases, including the China National Knowledge Infrastructure, WAN FANG, VIP, SinoMed, Cochrane Library, PubMed, Embase, and Web of Science, covering the period from each database's inception to September 2023. Literature screening, quality assessment and data extraction were performed according to the inclusion and exclusion criteria. After extracting the literature data, RevMan 5.4 software was applied to analyse the postoperative knee function score, postoperative knee mobility, postoperative pain, bearing dislocation rate, aseptic loosening, postoperative progression of posterolateral arthritis, and revision rate. RESULT: A total of 9 studies were included, including 6 cohort studies and 3 matched case‒control studies. A total of 1544 knees were included, including 183 in the SONK group and 1361 in the MKOA group. The meta-analysis results showed that the SONK and MKOA groups showed a significant difference in postoperative knee function scores [MD = 0.16, 95% CI (- 1.20, 1.51), P = 0.82], postoperative knee mobility [MD = - 0.05, 95% CI (- 1.99. 1.89), P = 0.96], postoperative pain [OR = 0.89, 95% CI (0.23, 3.45), P = 0.87], rate of bearing dislocation [OR = 1.28, 95% CI (0.34, 4.81), P = 0.71], aseptic loosening [OR = 2.22, 95% CI (0.56, 8.82), P = 0.26], postoperative posterolateral arthritis progression [OR = 2.14, 95% CI (0.47, 9.86), P = 0.33], and revision rate [OR = 1.28, 95% CI (0.53, 3.04), P = 0.58] were not statistically significant. CONCLUSION: OUKA treatment with SONK and MKOA can achieve similar satisfactory clinical results.


Assuntos
Luxações Articulares , Osteoartrite do Joelho , Osteonecrose , Humanos , Articulação do Joelho , Osteoartrite do Joelho/cirurgia , Osteonecrose/cirurgia , Dor Pós-Operatória
8.
Environ Pollut ; 344: 123407, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244900

RESUMO

Understanding the long-term change trends of ozone-induced yield losses is crucial for formulating strategies to alleviate ozone damaging effects, aiming towards achieving the Zero Hunger Sustainable Development Goal. Despite a wealth of experimental research indicating that ozone's influence on agricultural production exhibits marked fluctuations and differs significantly across various geographical locations, previous studies using global statistical models often failed to capture this spatial-temporal variability, leading to uncertainties in ozone impact estimation. To address this issue, we conducted a comprehensive assessment of the spatial-temporal variability of ozone impacts on maize and soybean yields in the United States (1981-2021) using a geographically and temporally weighted regression (GTWR) model. Our results revealed that over the past four decades, ozone pollution has led to average yield losses of -3.5% for maize and -6.1% for soybean, translating into an annual economic loss of approximately $2.6 billion. Interestingly, despite an overall downward trend in ozone impacts on crop yields following the implementation of stringent ozone emission control measures in 1997, our study identified distinct peaks of abnormally high yield reduction rates in drought years. Significant spatial heterogeneity was detected in ozone impacts across the study area, with ozone damage hotspots located in the Southeast Region and the Mississippi River Basin for maize and soybean, respectively. Furthermore, we discovered that hydrothermal factors modulate crop responses to ozone, with maize showing an inverted U-shaped yield loss trend with temperature increases, while soybean demonstrated an upward trend. Both crops experienced amplified ozone-induced yield losses with rising precipitation. Overall, our study highlights the necessity of incorporating spatiotemporal variability into assessments of crop yield losses attributable to ozone pollution. The insights garnered from our findings can contribute to the formulation of region-specific pollutant emission policies, based on the distinct profiles of ozone-induced agricultural damage across different regions.


Assuntos
Glycine max , Ozônio , Zea mays , Mississippi , Agricultura , Ozônio/toxicidade
9.
J Matern Fetal Neonatal Med ; 36(2): 2289348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38057122

RESUMO

OBJECTIVE: To explore whether pregnancy-induced hypertension (PIH) mediates the association between pre-pregnancy body mass index (BMI) and adverse neonatal outcomes in women undergoing assisted reproductive technology (ART) for singleton pregnancies. METHODS: This cohort study collected 79437 maternal data from the National Vital Statistics System (NVSS) between 2020 and 2021. Univariable and multivariable logistic regression models were applied to estimate the association between pre-pregnancy BMI and PIH in women receiving ART as well as the associations between pre-pregnancy BMI and PIH and adverse neonatal outcomes. The mediation effect of PIH on the association between pre-pregnancy BMI and adverse neonatal outcomes was estimated according to the total effect, natural direct effect, natural indirect effect, and percentage of mediation. RESULTS: There were 25769 participants had adverse neonatal outcomes at the end of the follow-up. After adjusting for confounding factors, an increased risk of PIH in women receiving ART was identified in those with pre-pregnancy BMI ≥25 kg/m2 [odds ratio (OR)=1.92, 95% confidence interval (CI):1.84-2.01]. Pre-pregnancy BMI ≥25 kg/m2 was associated with an increased risk of adverse neonatal outcomes (OR = 1.26, 95%CI:1.22-1.30). Women with PIH had an increased risk of adverse neonatal outcomes (OR = 1.79, 95%CI:1.71-1.87). The percentage mediated by PIH in the association between pre-pregnancy BMI and adverse neonatal outcomes was 21.30%. CONCLUSION: PIH partially mediated the association between pre-pregnancy BMI and adverse neonatal outcomes in women receiving ART, which recommends that women control weight before receiving ART.


Assuntos
Hipertensão Induzida pela Gravidez , Gravidez , Recém-Nascido , Feminino , Humanos , Hipertensão Induzida pela Gravidez/epidemiologia , Hipertensão Induzida pela Gravidez/etiologia , Índice de Massa Corporal , Estudos de Coortes , Técnicas de Reprodução Assistida/efeitos adversos , Modelos Logísticos , Estudos Retrospectivos , Resultado da Gravidez/epidemiologia
10.
Sci Rep ; 13(1): 19221, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932287

RESUMO

Immune inhibitory receptors (IRs) play a critical role in the regulation of immune responses to various respiratory viral infections. However, in coronavirus disease 2019 (COVID-19), the roles of these IRs in immune modulation, metabolic reprogramming, and clinical characterization remain to be determined. Through consensus clustering analysis of IR transcription in the peripheral blood of patients with COVID-19, we identified two distinct IR patterns in patients with COVID-19, which were named IR_cluster1 and IR_cluster2. Compared to IR_cluster1 patients, IR_cluster2 patients with lower expressions of immune inhibitory receptors presented with a suppressed immune response, lower nutrient metabolism, and worse clinical manifestations or prognosis. Considering the critical influence of the integrated regulation of multiple IRs on disease severity, we established a scoring system named IRscore, which was based on principal component analysis, to evaluate the combined effect of multiple IRs on the disease status of individual patients with COVID-19. Similar to IR_cluster2 patients, patients with high IRscores had longer hospital-free days at day 45, required ICU admission and mechanical ventilatory support, and presented higher Charlson comorbidity index and SOFA scores. A high IRscore was also linked to acute infection phase and absence of drug intervention. Our investigation comprehensively elucidates the potential role of IR patterns in regulating the immune response, modulating metabolic processes, and shaping clinical manifestations of COVID-19. All of this evidence suggests the essential role of prognostic stratification and biomarker screening based on IR patterns in the clinical management and drug development of future emerging infectious diseases such as COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Prognóstico , Pacientes , Imunidade
11.
J Org Chem ; 88(20): 14445-14453, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815929

RESUMO

The direct alkoxylation of amides has been accomplished via methoxyiminoacyl (MIA)-mediated Pd-catalyzed C-H functionalization. A diverse array of alkylamide substrates is amenable to this protocol, providing γ-C(sp3)-alkoxylation of alkylamide derivatives with good to high efficiency. Two aspects of the research were completed to explore the reaction mechanism. On the one hand, the result of the kinetic isotopic effect experiment and control experiment indicated that reductive elimination is a rate-limiting step. On the other hand, density functional theory calculations demonstrated that a concerted Sn2 reductive elimination mechanism pathway is prior. Finally, the MIA group could be efficiently hydrogenated and protected in a one-pot procedure, which provides a short synthetic route to γ-methoxy amino acid derivatives.

12.
ACS Nano ; 17(18): 18562-18575, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708443

RESUMO

The treatment of spinal cord injury (SCI) remains unsatisfactory owing to the complex pathophysiological microenvironments at the injury site and the limited regenerative potential of the central nervous system. Metformin has been proven in clinical and animal experiments to repair damaged structures and functions by promoting endogenous neurogenesis. However, in the early stage of acute SCI, the adverse pathophysiological microenvironment of the injury sites, such as reactive oxygen species and inflammatory factor storm, can prevent the activation of endogenous neural stem cells (NSCs) and the differentiation of NSCs into neurons, decreasing the whole repair effect. To address those issues, a series of robust and multifunctional natural polyphenol-metformin nanoparticles (polyphenol-Met NPs) were fabricated with pH-responsiveness and excellent antioxidative capacities. The resulting NPs possessed several favorable advantages: First, the NPs were composed of active ingredients with different biological properties, without the need for carriers; second, the pH-responsiveness feature could allow targeted drug delivery at the injured site; more importantly, NPs enabled drugs with different performances to exhibit strong synergistic effects. The results demonstrated that the improved microenvironment by natural polyphenols boosted the differentiation of activated NSCs into neurons and oligodendrocytes, which could efficiently repair the injured nerve structures and enhance the functional recovery of the SCI rats. This work highlighted the design and fabrication of robust and multifunctional NPs for SCI treatment via efficient microenvironmental regulation and targeted NSCs activation.


Assuntos
Metformina , Nanopartículas Multifuncionais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Ratos , Traumatismos da Medula Espinal/tratamento farmacológico , Metformina/farmacologia , Polifenóis/farmacologia
13.
J Med Chem ; 66(18): 12894-12910, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37706660

RESUMO

Neomorphic IDH2R140Q mutation is commonly found in acute myeloid leukemia (AML), and inhibiting its activity has been validated as an effective treatment for AML. Herein, we report a series of highly potent and selective IDH2R140Q inhibitors. Among them, compound 36 was identified as the most promising inhibitor, with an IC50 value of 29 nM and more than 490-fold selectivity over wild-type IDH2. The compound significantly suppressed D2HG production (IC50 = 10 nM) and induced differentiation in TF-1/IDH2R140Q cells. Furthermore, it showed reasonable pharmacokinetic properties with high bioavailability (F = 90.3%) and an appropriate half-life (T1/2 = 6.4 h). In vivo, oral administration of compound 36 at a dose of 25 mg/kg effectively reduced D2HG levels in the tumor of TF-1/IDH2R140Q xenograft mouse model. Besides, compound 36 displayed little effect on the hERG current. These results suggest that compound 36 has the potential to be an efficacious treatment for AML.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37608176

RESUMO

Skeleton builders are essential for achieving deep sludge dewatering. In this study, a novel spent coffee ground (SCG)-based skeleton builder was developed to attain deep sludge dewatering by combined conditioning with FeCl3, and possible mechanisms were examined. Through different surface analysis techniques, it was demonstrated that at a pyrolysis temperature of 300 °C, the spent coffee ground biochar (SCGB-300) has an intact pore structure, a rigid carbon skeleton, and large oxygen-containing functional groups, making it the best skeleton builder for sludge dewatering. When combined with FeCl3 for conditioning, the structure of SCGB-300 remained intact under high pressure and played important role. The rich porous structure facilitated water drainage. During the sludge conditioning, small amount of positive charge on the surface of SCGB-300 further increased the zeta potential of sludge through charge neutralization. At the same time, the adsorption of SCGB-300 removed viscous hydrophilic substances and further improved the dewatering performance. At an optimum dosage of 6% (dry solid, DS) FeCl3 and 30% SCGB-300 (DS), the moisture content of sludge was reduced from 85.47% to 63.35%, and the dewatering rate was increased from 46.08% to 70.03%. Therefore, SCGB is a promising skeleton builder for sludge conditioning and deep dewatering.

15.
Phys Chem Chem Phys ; 25(34): 22979-22988, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37593965

RESUMO

Inspired by natural photosynthesis, two-dimensional van der Waals (vdW) heterostructures are considered as promising photocatalysts for solar-driven water splitting and they attract ever-growing interest. A type-II vdW hetero-photocatalyst (CdTe/B4C3) integrating the polarized CdTe into metal-free B4C3 was constructed, which could achieve solar-driven spontaneous overall water splitting at pH = 0-7 and exhibit a high solar-to-hydrogen (STH) efficiency of 19.64%. Our calculation results show that the interlayer interaction between the CdTe and B4C3 monolayers in the heterostructure creates an interfacial electric field enhanced by the intrinsic dipole of polarized CdTe, which accelerates the effective separation of photogenerated carriers and makes the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) take place separately on the B4C3 and CdTe layers. Furthermore, the CdTe/B4C3 heterostructure has decent band edge positions to promote the redox reaction to decompose water due to the significant electrostatic potential difference in the CdTe/B4C3 heterostructure and it could trigger spontaneous redox reaction under light at pH = 0-7. This work is helpful for us to design type-II heterojunction photocatalysts with high efficiency of photogenerated carrier separation for overall water splitting.

16.
Sci Rep ; 13(1): 9319, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291260

RESUMO

Establishing the host range for novel viruses remains a challenge. Here, we address the challenge of identifying non-human animal coronaviruses that may infect humans by creating an artificial neural network model that learns from spike protein sequences of alpha and beta coronaviruses and their binding annotation to their host receptor. The proposed method produces a human-Binding Potential (h-BiP) score that distinguishes, with high accuracy, the binding potential among coronaviruses. Three viruses, previously unknown to bind human receptors, were identified: Bat coronavirus BtCoV/133/2005 and Pipistrellus abramus bat coronavirus HKU5-related (both MERS related viruses), and Rhinolophus affinis coronavirus isolate LYRa3 (a SARS related virus). We further analyze the binding properties of BtCoV/133/2005 and LYRa3 using molecular dynamics. To test whether this model can be used for surveillance of novel coronaviruses, we re-trained the model on a set that excludes SARS-CoV-2 and all viral sequences released after the SARS-CoV-2 was published. The results predict the binding of SARS-CoV-2 with a human receptor, indicating that machine learning methods are an excellent tool for the prediction of host expansion events.


Assuntos
COVID-19 , Quirópteros , Coronaviridae , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Humanos , SARS-CoV-2/genética , Filogenia
17.
Food Chem ; 419: 136038, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004368

RESUMO

This study aimed to design a cold-set hydrogel of egg white protein (EWP) with good mechanical properties for encapsulating curcumin. Dextran sulfate (DS) and transglutaminase (TGase) were used to control the aggregation and gelation behavior of EWP at preheating step and gelation step, respectively. The optimum soluble protein aggregate size was obtained in the EWP/DS mixture at a mass ratio of 10 under 85 °C preheated (HED10). The presence of TGase further enhanced the cross-linking degree between protein aggregates during the gelation step. The highest gel hardness was found in HED10 hydrogel with TGase, which is almost 10 times the pure EWP gel. Besides, the HED hydrogels effectively slowed down the release rate of curcumin in gastrointestinal digestion. This work provides a theoretical basis for the development of cold-set EWP hydrogel with good mechanical strength by sulfated polysaccharide addition and TGase cross-linking as encapsulation delivery systems.


Assuntos
Curcumina , Hidrogéis , Sulfato de Dextrana , Proteínas do Ovo
18.
Acta Pharm Sin B ; 13(2): 445-459, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873177

RESUMO

Liver diseases constitute a major healthcare burden globally, including acute hepatic injury resulted from acetaminophen overdose, ischemia-reperfusion or hepatotropic viral infection and chronic hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Attainable treatment strategies for most liver diseases remain inadequate, highlighting the importance of substantial pathogenesis. The transient receptor potential (TRP) channels represent a versatile signalling mechanism regulating fundamental physiological processes in the liver. It is not surprising that liver diseases become a newly explored field to enrich our knowledge of TRP channels. Here, we discuss recent findings revealing TRP functions across the fundamental pathological course from early hepatocellular injury caused by various insults, to inflammation, subsequent fibrosis and hepatoma. We also explore expression levels of TRPs in liver tissues of ALD, NAFLD and HCC patients from Gene Expression Omnibus (GEO) or The Cancer Genome Atlas (TCGA) database and survival analysis estimated by Kaplan-Meier Plotter. At last, we address the therapeutical potential and challenges by pharmacologically targeting TRPs to treat liver diseases. The aim is to provide a better understanding of the implications of TRP channels in liver diseases, contributing to the discovery of novel therapeutic targets and efficient drugs.

19.
Adv Mater ; 35(13): e2210021, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36754047

RESUMO

Low solid content is the ultimate reason for the brittleness and weakness of ordinary hydrogels. Here, hydrogels with ultra-low solid content but good mechanical properties are successfully synthesized using high monomer concentrations and low cross-linker/monomer ratios to obtain highly entangled structure and poly(l-lysine)-based cross-linker to introduce peptide chains. Compared with hydrogel cross-linked with N,N'-methylenebisacrylamide (BIS), the peptide-crosslinked one has a larger swelling degree in water, leading to fully swollen gel with ultra-low solid content (5.8%). However, it still exhibits excellent mechanical properties, including high stretchability (440%), high tensile strength (220 KPa), superb resilience (99%), high fracture toughness (2100 J m-2 ), excellent fatigue resistance (720 J m-2 ), low friction (0.0059), and high wear resistance. These properties are comparable to or even better than the BIS-crosslinked hydrogel, although the former has much lower solid content. The excellent mechanical properties of the peptide-crosslinked gel are attributed to its highly entangled structure and also to the introduction of a novel mechanism for energy dissipation, that is, energy dissipation via breakage of intramolecular hydrogen bonds stabilizing the helical structure of the peptide.

20.
Chemistry ; 29(22): e202203960, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36722624

RESUMO

Ethylene (C2 H4 ) is a major chemical for the modern society, and new technologies for its production are of strategic importance globally. Recently, oxidative dehydrogenation of ethane (C2 H6 ) using CO2 as a milder oxidant (CO2 -ODH) is proposed as a potential way for C2 H4 production, and development of effective catalysts for the process is drawing wide attention. Here, we report on a facilely prepared ZSM-5 supported Zn system, i. e., ZnZSM-5, which showed great promise in CO2 -ODH. Samples with different Zn loadings were prepared and evaluated, and the highest performance was obtained over 0.05ZnZSM-5 at 700 °C and a CO2 :C2 H6 feeding ratio of 5 : 1. During 340 min TOS, the C2 H6 conversion decreased moderately from 36.2 % to 23.1 %, and the C2 H4 yield stabilized at 21.9 % to 27.9 %. Based on systematic characterization and investigation of reaction conditions, the structure-performance relationship and reaction network were discussed in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...