Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25768497

RESUMO

Merging of granular flows is ubiquitous in industrial, mining, and geological processes. However, its behavior remains poorly understood. This paper studies the phase transition and flow-rate behavior of two granular flows merging into one channel. When the main channel is wider than the side channel, the system shows a remarkable two-sudden-drops phenomenon in the outflow rate when gradually increasing the main inflow. When gradually decreasing the main inflow, the system shows obvious hysteresis phenomenon. We study the flow-rate-drop phenomenon by measuring the area fraction and the mean velocity at the merging point. The phase diagram of the system is also presented to understand the occurrence of the phenomenon. We find that the dilute-to-dense transition occurs when the area fraction of particles at the joint point exceeds a critical value ϕ(c)=0.65±0.03.

2.
Artigo em Inglês | MEDLINE | ID: mdl-23410472

RESUMO

This paper studies a bidisperse granular mixture consisting of two species of stainless steel spheres in a vertically vibrated compartmentalized container. The experiments show that with proper vibration acceleration, the granular clock stops when horizontal segregation of the large spheres residing in the far end from the barrier wall occurs. When the segregation is broken, the granular clock restarts. We present the phase diagrams of vibration acceleration versus container width and small particle number, which exhibits three different regions, namely, clustering state, stop-restart of the granular clock, and the granular clock. A generalized flux model is proposed to reproduce the phenomenon of stop and restart of the granular clock.


Assuntos
Algoritmos , Coloides/química , Modelos Químicos , Reologia/métodos , Simulação por Computador , Movimento (Física) , Vibração
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(4 Pt 1): 041132, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22680443

RESUMO

This paper has studied spontaneous symmetry breaking (SSB) phenomenon in two types of two-channel asymmetric simple exclusion processes (ASEPs). One common feature of the two systems is that interactions for each species of particle happen at only one site, and the system reduces to two independent ASEPs when interaction vanishes. It is shown that with the weakening of interaction, the SSB is suppressed. More interestingly, the SSB disappears before the interaction is eliminated. Our work thus indicates that local interaction has to be strong enough to produce SSB. The mean-field analysis has been carried out, and the results are consistent with the simulation ones.


Assuntos
Modelos Químicos , Modelos Moleculares , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...