Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967596

RESUMO

With an increasing prevalence, metabolic dysfunction-associated steatotic liver disease (MASLD) has become a major global health problem. MASLD is well-known as a multifactorial disease. Mitochondrial dysfunction and alterations in the gut bacteria are 2 vital events in MASLD. Recent studies have highlighted the cross-talk between microbiota and mitochondria, and mitochondria are recognized as pivotal targets of the gut microbiota to modulate the host's physiological state. Mitochondrial dysfunction plays a vital role in MASLD and is associated with multiple pathological changes, including hepatocyte steatosis, oxidative stress, inflammation, and fibrosis. Metabolites are crucial mediators of the gut microbiota that influence extraintestinal organs. Additionally, regulation of the composition of gut bacteria may serve as a promising therapeutic strategy for MASLD. This study reviewed the potential roles of several common metabolites in MASLD, emphasizing their impact on mitochondrial function. Finally, we discuss the current treatments for MASLD, including probiotics, prebiotics, antibiotics, and fecal microbiota transplantation. These methods concentrate on restoring the gut microbiota to promote host health.


Assuntos
Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Mitocôndrias , Humanos , Microbioma Gastrointestinal/fisiologia , Mitocôndrias/metabolismo , Probióticos/uso terapêutico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/microbiologia , Fígado Gorduroso/terapia , Prebióticos , Antibacterianos/uso terapêutico , Animais , Estresse Oxidativo
2.
Mol Neurobiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388774

RESUMO

This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.

3.
Dalton Trans ; 52(31): 10918-10926, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37489646

RESUMO

Two novel alkaline-earth zincophosphites, namely CaZn(HPO3)2 and Ba2Zn(HPO3)3, were successfully synthesized under hydrothermal conditions. CaZn(HPO3)2 exhibits a three-dimensional (3D) anionic framework with a 6-connected uni-nodal pcu α-Po primitive cubic topology, constructed by unique Zn2O8 dimers and HPO3 pseudo-tetrahedra, while Ba2Zn(HPO3)3 displays one-dimensional (1D) [Zn(HPO3)3]4- anionic chains. It is worth mentioning that CaZn(HPO3)2 represents the first example of an alkaline-earth zincophosphite compound with a 3D framework structure. Our research also revealed the importance of both alkaline earth cation sizes and Zn/P ratios in anionic open-framework formation. The crystal structures of both compounds were further verified by energy dispersive spectroscopy, IR spectroscopy and Raman spectroscopy. Optical diffuse reflectance spectra, coupled with Tauc's fitting, revealed direct bandgaps with energy values of 4.33 and 4.48 eV for CaZn(HPO3)2 and Ba2Zn(HPO3)3, respectively, which differ from the prediction of theoretical calculations. Density of states calculations were conducted to reveal the origin of the bandgaps and bond interactions. Both compounds exhibited moderate birefringence values. This work may have implications for the design and synthesis of novel metal phosphites with desired properties.

4.
Neural Regen Res ; 18(7): 1584-1590, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36571366

RESUMO

Neurotrophic factors, particularly nerve growth factor, enhance neuronal regeneration. However, the in vivo applications of nerve growth factor are largely limited by its intrinsic disadvantages, such as its short biological half-life, its contribution to pain response, and its inability to cross the blood-brain barrier. Considering that let-7 (human miRNA) targets and regulates nerve growth factor, and that let-7 is a core regulator in peripheral nerve regeneration, we evaluated the possibilities of let-7 application in nerve repair. In this study, anti-let-7a was identified as the most suitable let-7 family molecule by analyses of endogenous expression and regulatory relationship, and functional screening. Let-7a antagomir demonstrated biosafety based on the results of in vivo safety assessments and it entered into the main cell types of the sciatic nerve, including Schwann cells, fibroblasts and macrophages. Use of hydrogel effectively achieved controlled, localized, and sustained delivery of let-7a antagomir. Finally, let-7a antagomir was integrated into chitosan conduit to construct a chitosan-hydrogel scaffold tissue-engineered nerve graft, which promoted nerve regeneration and functional recovery in a rat model of sciatic nerve transection. Our study provides an experimental basis for potential in vivo application of let-7a.

5.
BMC Genomics ; 23(1): 821, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510127

RESUMO

BACKGROUND: Hungarian white goose has excellent down production performance and was introduced to China in 2010. The growth and development of feather follicles has an important impact on down production. Goose feather follicles can be divided into primary and secondary feather follicles, both of which originate in the embryonic stage. Msx2 (Msh Homeobox 2) plays a regulatory role in tissues and organs such as eyes, teeth, bones and skin. However, its regulatory mechanism on goose feather follicles development remains unclear. RESULTS: Msx2 gene first increased, then decreased and increased at the end (E13, E18, E23, E28) during embryonic feather follicle development, and the expression level was the highest at E18. The pEGFP-N1-Msx2 overexpression vector and si-Msx2 siRNA vector were constructed to transfect goose embryo dermal fibroblasts. The results showed that the cell viability of ov-Msx2 group was significantly increased, and the gene expression levels of FGF5 and TGF-ß1 genes were significantly down-regulated (P < 0.05), the expressions of PCNA, Bcl2, CDK1, FOXN1 and KGF genes were significantly up-regulated (P < 0.05). After transfection of siRNA vector, the cell viability of the si-Msx2 group was significantly decreased (P < 0.01) compared with the si-NC group. TGF-ß1 expression was significantly up-regulated (P < 0.05), FGF5 expression was extremely significantly up-regulated (P < 0.01), while PCNA, Bcl2, CDK1, FOXN1 and KGF gene expression was significantly down-regulated (P < 0.05). High-throughput sequencing technology was used to mine the exon SNPs of Msx2. A total of 11 SNP loci were screened, four of the SNPs located in exon 1 were missense mutations. The feather follicle diameter of the GC genotype at the G78C site is significantly larger than that of the other two genotypes. CONCLUSIONS: Msx2 maybe inhibit the apoptosis of goose dermal fibroblasts and promotes their proliferation. G78C can be used as a potential molecular marker for downy Variety.


Assuntos
Gansos , Fator de Crescimento Transformador beta1 , Animais , Fator de Crescimento Transformador beta1/metabolismo , Gansos/genética , Plumas , Desenvolvimento Embrionário/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Neural Regen Res ; 17(7): 1588-1595, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34916445

RESUMO

Cellular senescence and proliferation are essential for wound healing and tissue remodeling. However, senescence-proliferation cell fate after peripheral nerve injury has not been clearly revealed. Here, post-injury gene expression patterns in rat sciatic nerve stumps (SRP113121) and L4-5 dorsal root ganglia (SRP200823) obtained from the National Center for Biotechnology Information were analyzed to decipher cellular senescence and proliferation-associated genetic changes. We first constructed a rat sciatic nerve crush model. Then, ß-galactosidase activities were determined to indicate the existence of cellular senescence in the injured sciatic nerve. Ki67 and EdU immunostaining was performed to indicate cellular proliferation in the injured sciatic nerve. Both cellular senescence and proliferation were less vigorous in the dorsal root ganglia than in sciatic nerve stumps. These results reveal the dynamic changes of injury-induced cellular senescence and proliferation from both genetic and morphological aspects, and thus extend our understanding of the biological processes following peripheral nerve injury. The study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20190226-001) on February 26, 2019.

8.
Front Cell Neurosci ; 15: 743532, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720881

RESUMO

CD146 is cell adhesion molecule and is implicated in a variety of physiological and pathological processes. However, the involvement of CD146 in peripheral nerve regeneration has not been studied yet. Here, we examine the spatial and temporal expression pattern of CD146 in injured mouse sciatic nerve via high-throughput data analysis, RT-PCR and immunostaining. By microarray data analysis and RT-PCR validation, we show that CD146 mRNA is significantly up-regulated in the nerve bridge and in the distal nerve stump following mouse sciatic nerve transection injury. By single cell sequencing data analysis and immunostaining, we demonstrate that CD146 is up-regulated in Schwann cells and cells associated with blood vessels following mouse peripheral nerve injury. Bioinformatic analysis revealed that CD146 not only has a key role in promoting of blood vessel regeneration but also regulates cell migration. The biological function of CD146 in Schwann cells was further investigated by knockdown of CD146 in rat primary Schwann cells. Functional assessments showed that knockdown of CD146 decreases viability and proliferation of Schwann cells but increases Schwann cell migration. Collectively, our findings imply that CD146 could be a key cell adhesion molecule that is up-regulated in injured peripheral nerves to regulate peripheral nerve regeneration.

9.
Pain Ther ; 10(2): 1755-1771, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34254233

RESUMO

INTRODUCTION: The chronic neuropathic pain associated with postherpetic neuralgia (PHN) can last for several months or even many years, seriously affecting the affected person's work, sleep, mood, and daily life activities. In generaly, current treatments for PHN are at best limited and unsatisfactory, and adverse reactions are common, especially in elderly patients. Electroacupuncture (EA) is widely used clinically to manage painful diseases, but there remains a lack of evidence to support the effectiveness of EA on PHN. This study is designed to assess the efficacy and safety of EA on PHN, and to provide evidence-based medical evidence for EA treatment of PHN. METHODS: This multicenter, prospective, randomized controlled trial will recruit 448 patients with PHN at seven clinical centers. Multicenter stratified variable block randomization will be used, and the eligible patients will be randomly allocated in a ratio of 1:1 to the EA group or sham EA group. The EA group will receive 4 weeks of EA treatment, given as 30-min treatment sessions, once daily, 5 times per week, for a total of 20 treatments; the sham EA group will receive sham EA treatment under the same conditions. PLANNED OUTCOMES: The primary outcome measure is the 11-point Numeric Rating Scale pain score at week 4. The secondary outcome measures, including mechanical pain threshold, pain area of PHN, average number of pain episodes, the short-form McGill Pain Questionnaire 2, Zoster Brief Pain Inventory, the Depression, Anxiety, and Positive Outlook Scale, Patient Global Impression of Change, safety of EA, and use of concomitant medications, among others. The primary analysis of the outcomes will be the mixed-effect model with repeated measurement between groups on an intent-to-treat population. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT04560361. Registered 23 September 2020 ( https://clinicaltrials.gov/ct2/show/NCT04560361?term=NCT04560361&draw=2&rank=1 ).

10.
Cell Death Dis ; 12(5): 417, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888681

RESUMO

Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that stimulates neuronal development and survival. Our previous study has demonstrated that LIF mRNA is dysregulated in the peripheral nerve segments after nerve injury. Here, we show that LIF protein is abundantly expressed in Schwann cells after rat sciatic nerve injury. Functionally, suppressed or elevated LIF increases or decreases the proliferation rate and migration ability of Schwann cells, respectively. Morphological observations demonstrate that in vivo application of siRNA against LIF after peripheral nerve injury promotes Schwann cell migration and proliferation, axon elongation, and myelin formation. Electrophysiological and behavior assessments disclose that knockdown of LIF benefits the function recovery of injured peripheral nerves. Differentially expressed LIF affects the metabolism of Schwann cells and negatively regulates ERFE (Erythroferrone). Collectively, our observations reveal the essential roles for LIF in regulating the proliferation and migration of Schwann cells and the regeneration of injured peripheral nerves, discover ERFE as a downstream effector of LIF, and extend our understanding of the molecular mechanisms underlying peripheral nerve regeneration.


Assuntos
Fator Inibidor de Leucemia/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Animais , Movimento Celular , Proliferação de Células , Ratos
11.
RSC Adv ; 10(64): 38767-38773, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35518415

RESUMO

Macrophages are notable immune cells that are recruited to the injury sites after peripheral nerve injury. Following peripheral nerve injury, increasing numbers of macrophages engulf debris and promote nerve regeneration. However, changes of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, two types of macrophages with dissimilar biological functions, have not been discovered. In the current study, the expression profiles of M1 and M2 macrophage marker genes in the sciatic nerve stumps and dorsal root ganglions (DRGs) after rat sciatic nerve injury were determined using RNA sequencing. Robust up-regulation of macrophage marker genes was observed in the injured sciatic nerve stumps as compared with in the DRGs. Measurement of the dynamic expression levels of M1 macrophage specific marker genes CD38 and Gpr18 as well as M2 macrophage specific marker genes Egr2 and Myc suggested that M1 macrophages were highly involved at all tested time points after peripheral nerve injury while M2 macrophage might be more involved in the later phase after nerve injury. Dynamic changes of M1 macrophage-inducing miRNAs showed that miR-18a, miR-19b, miR-21, miR-29a, and miR-29b were elevated in the injured nerve stump. These up-regulated miRNAs might mediate macrophage polarization by targeting multiple genes, such as Pten. Collectively, our study explored the unique temporal patterns of pro-inflammatory and anti-inflammatory macrophages after peripheral nerve injury for genetic aspects and provided a deeper understanding of the cellular and molecular basis of microenvironment reconstruction after peripheral nerve injury.

12.
Neural Regen Res ; 14(9): 1651-1656, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089066

RESUMO

MicroRNAs refer to a class of endogenous, short non-coding RNAs that mediate numerous biological functions. MicroRNAs regulate various physiological and pathological activities of peripheral nerves, including peripheral nerve repair and regeneration. Previously, using a rat sciatic nerve injury model, we identified many functionally annotated novel microRNAs, including miR-sc14. Here, we used real-time reverse transcription-polymerase chain reaction to examine miR-sc14 expression in rat sciatic nerve stumps. Our results show that miR-sc14 is noticeably altered following sciatic nerve injury, being up-regulated at 1 day and diminished at 7 days. EdU and transwell chamber assay results showed that miR-sc14 mimic promoted proliferation and migration of Schwann cells, while miR-sc14 inhibitor suppressed their proliferation and migration. Additionally, bioinformatic analysis examined potential target genes of miR-sc14, and found that fibroblast growth factor receptor 2 might be a potential target gene. Specifically, our results show changes of miR-sc14 expression in the sciatic nerve of rats at different time points after nerve injury. Appropriately, up-regulation of miR-sc14 promoted proliferation and migration of Schwann cells. Consequently, miR-sc14 may be an intervention target to promote repair of peripheral nerve injury. The study was approved by the Jiangsu Provincial Laboratory Animal Management Committee, China on March 4, 2015 (approval No. 20150304-004).

14.
Exp Ther Med ; 17(5): 4116-4122, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30988788

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs that regulate various tissues and organs, including the nervous system. Peripheral nerve injury is a common pathology of the nervous system and leads to differential expressions of a variety of miRNAs. Previously, a group of novel miRNAs have been identified in rat proximal nerve segments after sciatic nerve transection. However, the biological functions of these novel miRNAs remain undetermined. The aim of the current study was therefore to identify the function of a novel miRNA, miR-sc6, following nerve injury. Its target genes and effects on phenotypic modulation of Schwann cells were determined using a miR-sc6 mimic transfection. These observations contribute to the understanding of miRNA involvement in peripheral nerve injury and the cognition of regulatory mechanisms in peripheral nerve regeneration.

15.
J Cell Sci ; 132(6)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30782778

RESUMO

Tau protein (encoded by the gene microtubule-associated protein tau, Mapt) is essential for the assembly and stability of microtubule and the functional maintenance of the nervous system. Tau is highly abundant in neurons and is detectable in astrocytes and oligodendrocytes. However, whether tau is present in Schwann cells, the unique glial cells in the peripheral nervous system, is unclear. Here, we investigated the presence of tau and its coding mRNA, Mapt, in cultured Schwann cells and find that tau is present in these cells. Gene silencing of Mapt promoted Schwann cell proliferation and inhibited Schwann cell migration and differentiation. In vivo application of Mapt siRNA suppressed the migration of Schwann cells after sciatic nerve injury. Consistent with this, Mapt-knockout mice showed elevated proliferation and reduced migration of Schwann cells. Rats injected with Mapt siRNA and Mapt-knockout mice also exhibited impaired myelin and lipid debris clearance. The expression and distribution of the cytoskeleton proteins α-tubulin and F-actin were also disrupted in these animals. These findings demonstrate the existence and biological effects of tau in Schwann cells, and expand our understanding of the function of tau in the nervous system.


Assuntos
Traumatismos dos Nervos Periféricos/fisiopatologia , Células de Schwann/metabolismo , Proteínas tau/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas/citologia , Células Cultivadas/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Bainha de Mielina/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Nervo Isquiático/citologia , Tubulina (Proteína)/metabolismo , Proteínas tau/genética , Proteínas tau/isolamento & purificação
16.
Infect Genet Evol ; 70: 9-14, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30763775

RESUMO

Imported malaria due to Plasmodium ovale curtisi and P. ovale wallikeri infections from African countries has increased recently (2011-2014) in Chinese travelers. We report novel genotypes, their prevalence and the predominant haplotypes of P. ovale curtisi and P. ovale wallikeri circumsporozoite protein (CSP) from 20 African countries in Chinese travelers. These genotypes should be considered while designing a CSP-based vaccine against P. ovale malaria.


Assuntos
Doenças Transmissíveis Importadas/transmissão , Malária/transmissão , Plasmodium ovale/genética , Proteínas de Protozoários/genética , África , Antimaláricos/uso terapêutico , China , Genótipo , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Prevalência
17.
J Biol Chem ; 294(10): 3489-3500, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626732

RESUMO

Axon guidance helps growing neural axons to follow precise paths to reach their target locations. It is a critical step for both the formation and regeneration of neuronal circuitry. Netrin-1 (Ntn1) and its receptor, deleted in colorectal carcinoma (Dcc) are essential factors for axon guidance, but their regulation in this process is incompletely understood. In this study, using quantitative real-time RT-PCR (qRT-PCR) and biochemical and reporter gene assays, we found that the Ntn1 and Dcc genes are both robustly up-regulated in the sciatic nerve stump after peripheral nerve injury. Moreover, we found that the microRNA (miR) let-7 directly targets the Ntn1 transcript by binding to its 3'-untranslated region (3'-UTR), represses Ntn1 expression, and reduces the secretion of Ntn1 protein in Schwann cells. We also identified miR-9 as the regulatory miRNA that directly targets Dcc and found that miR-9 down-regulates Dcc expression and suppresses the migration ability of Schwann cells by regulating Dcc abundance. Functional examination in dorsal root ganglion neurons disclosed that let-7 and miR-9 decrease the protein levels of Ntn1 and Dcc in these neurons, respectively, and reduce axon outgrowth. Moreover, we identified a potential regulatory network comprising let-7, miR-9, Ntn1, Dcc, and related molecules, including the RNA-binding protein Lin-28 homolog A (Lin28), SRC proto-oncogene nonreceptor tyrosine kinase (Src), and the transcription factor NF-κB. In summary, our findings reveal that the miRs let-7 and miR-9 are involved in regulating neuron pathfinding and extend our understanding of the regulatory pathways active during peripheral nerve regeneration.


Assuntos
Receptor DCC/genética , Regulação para Baixo/genética , MicroRNAs/genética , Regeneração Nervosa/genética , Netrina-1/genética , Nervo Isquiático/fisiologia , Regiões 3' não Traduzidas/genética , Animais , Orientação de Axônios/genética , Sequência de Bases , Movimento Celular/genética , Gânglios Espinais/citologia , Humanos , Netrina-1/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proto-Oncogene Mas , Ratos , Nervo Isquiático/citologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo
18.
Neural Regen Res ; 14(3): 525-531, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30539823

RESUMO

MicroRNAs (miRNAs) can regulate the modulation of the phenotype of Schwann cells. Numerous novel miRNAs have been discovered and identified in rat sciatic nerve segments, including miR-3099. In the current study, miR-3099 expression levels following peripheral nerve injury were measured in the proximal stumps of rat sciatic nerves after surgical crush. Real-time reverse transcription-polymerase chain reaction was used to determine miR-3099 expression in the crushed nerve segment at 0, 1, 4, 7, and 14 days post sciatic nerve injury, which was consistent with Solexa sequencing outcomes. Expression of miR-3099 was up-regulated following peripheral nerve injury. EdU and transwell chamber assays were used to observe the effect of miR-3099 on Schwann cell proliferation and migration. The results showed that increased miR-3099 expression promoted the proliferation and migration of Schwann cells. However, reduced miR-3099 expression suppressed the proliferation and migration of Schwann cells. The potential target genes of miR-3099 were also investigated by bioinformatic tools and high-throughput outcomes. miR-3099 targets genes Aqp4, St8sia2, Tnfsf15, and Zbtb16 and affects the proliferation and migration of Schwann cells. This study examined the levels of miR-3099 at different time points following peripheral nerve injury. Our results confirmed that increased miR-3099 level induced by peripheral nerve injury can promote the proliferation and migration of Schwann cells.

19.
Mol Brain ; 11(1): 73, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558654

RESUMO

Peripheral nerve injury is a worldwide clinical issue that impacts patients' quality of life and causes huge society and economic burden. Injured peripheral nerves are able to regenerate by themselves. However, for severe peripheral nerve injury, the regenerative abilities are very limited and the regenerative effects are very poor. A better understanding of the mechanisms following peripheral nerve injury will benefit its clinical treatment. In this study, we systematically explored the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) in the injured sciatic nerve segments after nerve crush, identified significantly involved Gene ontology (GO) terms and Kyoto Enrichment of Genes and Genomes (KEGG) pathways, and innovatively analyzed the correlation of differentially expressed mRNAs and lncRNAs. After the clustering of co-expressed mRNAs and lncRNAs, we performed functional analysis, selected GO term "negative regulation of cell proliferation", and constructed a competing endogenous RNA (ceRNA) network of LIF and HMOX1 gene in this GO term. This study is the first to provide a systematic dissection of mRNA-microRNA (miRNA)-lncRNA ceRNA network following peripheral nerve injury and thus lays a foundation for further investigations of the regulating mechanisms of non-coding RNAs in peripheral nerve repair and regeneration.


Assuntos
Redes Reguladoras de Genes , Traumatismos dos Nervos Periféricos/genética , RNA/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Nervo Isquiático/lesões , Nervo Isquiático/patologia
20.
Front Physiol ; 9: 1519, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425652

RESUMO

Tight junctions seal off physical barriers, regulate fluid and solute flow, and protect the endoneurial microenvironment of the peripheral nervous system. Physical barriers in the peripheral nervous system were disrupted after nerve injury. However, the dynamic changes of tight junction components after peripheral nerve injury have not been fully determined yet. In the current study, by using previously obtained deep sequencing outcomes and bioinformatic tools, we found that tight junction signaling pathway was activated after peripheral nerve injury. The investigation of the temporal expression patterns of components in tight junction signaling pathway suggested that many claudin family members were down-regulated after nerve injury. Moreover, we examined the effects of matrix metalloproteinases 7 and 9 (MMP7 and MMP9) on tight junction genes both in vitro and in vivo and found that MMP7 and MMP9 modulated the expressions of genes coding for claudin 1, claudin 10, and claudin 22. Our study revealed the dynamic changes of tight junction components after peripheral nerve injury and thus might contribute to the understanding of the molecular mechanisms underlying peripheral nerve injury and regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...