Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Sci Rep ; 14(1): 15242, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956131

RESUMO

The cold tolerance of Litopenaeus vannamei is important for breeding in specific areas. To explore the cold tolerance mechanism of L. vannamei, this study analyzed biochemical indicators, cell apoptosis, and metabolomic responses in cold-tolerant (Lv-T) and common (Lv-C) L. vannamei under low-temperature stress (18 °C and 10 °C). TUNEL analysis showed a significant increase in apoptosis of hepatopancreatic duct cells in L. vannamei under low-temperature stress. Biochemical analysis showed that Lv-T had significantly increased levels of superoxide dismutase (SOD) and triglycerides (TG), while alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH-L), and uric acid (UA) levels were significantly decreased compared to Lv-C (p < 0.05). Metabolomic analysis displayed significant increases in metabolites such as LysoPC (P-16:0), 11beta-Hydroxy-3,20-dioxopregn-4-en-21-oic acid, and Pirbuterol, while metabolites such as 4-Hydroxystachydrine, Oxolan-3-one, and 3-Methyldioxyindole were significantly decreased in Lv-T compared to Lv-C. The differentially regulated metabolites were mainly enriched in pathways such as Protein digestion and absorption, Central carbon metabolism in cancer and ABC transporters. Our study indicate that low temperature induces damage to the hepatopancreatic duct of shrimp, thereby affecting its metabolic function. The cold resistance mechanism of Lv-T L. vannamei may be due to the enhancement of antioxidant enzymes and lipid metabolism.


Assuntos
Apoptose , Temperatura Baixa , Resposta ao Choque Frio , Metabolômica , Penaeidae , Animais , Penaeidae/metabolismo , Penaeidae/fisiologia , Metabolômica/métodos , Metaboloma , Superóxido Dismutase/metabolismo
3.
Med Phys ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003592

RESUMO

BACKGROUND: Magnetoencephalography (MEG) and magnetic resonance imaging (MRI) are non-invasive imaging techniques that offer effective means for disease diagnosis. A more straightforward and optimized method is presented for designing gradient coils which are pivotal parts of the above imaging systems. PURPOSE: A novel design method based on stream function combining an optimization algorithm is proposed to obtain highly linear gradient coil. METHODS: Two-dimensional Fourier expansion of the current field on the surface where the coil is located and the equipotential line of the expansion term superposition according to the number of turns of the coil are used to represent the coil shape. Particle swarm optimization is utilized to optimize the coil shape while linearity and field uniformity are used as parameters to evaluate the coil performance. Through this method, the main parameters such as input current distribution region, coil turns, desired magnetic field strength, expansion order and iteration times can be combined in a given solution space to optimize coil design. RESULTS: Simulation results show that the maximum linearity spatial deviation of the designed bi-planar x-gradient coil compared with that of target field method is reduced from 14% to 0.54%, and that of the bi-planar z-gradient coil is reduced from 8.98% to 0.52%. Similarly, that of the cylindrical x-gradient coil is reduced from 2% to 0.1%, and that of the cylindrical z-gradient coil is reduced from 0.87% to 0.45%. The similar results are found in the index of inhomogeneity error. Moreover, it has also been verified experimentally that the result of measured magnetic field is consist with simulated result. CONCLUSIONS: The proposed method provides a straightforward way that simplifies the design process and improves the linearity of designed gradient coil, which could be beneficial to realize better magnetic field in engineering applications.

4.
Tuberculosis (Edinb) ; 148: 102534, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38909563

RESUMO

BACKGROUND: Extrapulmonary tuberculosis (EPTB) without symptomatic pulmonary involvement has been thought to be non-transmissible, but EPTB with asymptomatic pulmonary tuberculosis (PTB) could transmit tuberculosis (TB). Genomic investigation of Mycobacterium tuberculosis (Mtb) isolates from EPTB may provide insight into its epidemiological role in TB transmission. METHODS: Between January 2017 and May 2020, 107 Mtb isolates were obtained from surgical drainage of bone TB patients at the Beijing Chest Hospital, and 218 Mtb strains were isolated from PTB cases. These 325 Mtb isolates were whole-genome sequenced to reconstruct a phylogenetic tree, identify transmission clusters, and infer transmission links using a Bayesian approach. Possible subclinical PTB in the bone TB patients was investigated with chest imaging by two independent experts. RESULTS: Among 107 bone TB patients, 10 were in genomic clusters (≤12 SNPs). Phylogenetic analysis suggested that three bone TB patients transmitted the infection to secondary cases, supported by epidemiological investigations. Pulmonary imaging of 44 bone TB patients revealed that 79.5 % (35/44) had radiological abnormalities suggestive of subclinical PTB. CONCLUSIONS: This study provides genomic evidence that bone TB patients without clinically diagnosed PTB can be sources of TB transmission, underscoring the importance of screening for subclinical, transmissible PTB among EPTB cases.

5.
Lancet Microbe ; 5(6): e570-e580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734030

RESUMO

BACKGROUND: Bacterial diversity could contribute to the diversity of tuberculosis infection and treatment outcomes observed clinically, but the biological basis of this association is poorly understood. The aim of this study was to identify associations between phenogenomic variation in Mycobacterium tuberculosis and tuberculosis clinical features. METHODS: We developed a high-throughput platform to define phenotype-genotype relationships in M tuberculosis clinical isolates, which we tested on a set of 158 drug-sensitive M tuberculosis strains sampled from a large tuberculosis clinical study in Ho Chi Minh City, Viet Nam. We tagged the strains with unique genetic barcodes in multiplicate, allowing us to pool the strains for in-vitro competitive fitness assays across 16 host-relevant antibiotic and metabolic conditions. Relative fitness was quantified by deep sequencing, enumerating output barcode read counts relative to input normalised values. We performed a genome-wide association study to identify phylogenetically linked and monogenic mutations associated with the in-vitro fitness phenotypes. These genetic determinants were further associated with relevant clinical outcomes (cavitary disease and treatment failure) by calculating odds ratios (ORs) with binomial logistic regressions. We also assessed the population-level transmission of strains associated with cavitary disease and treatment failure using terminal branch length analysis of the phylogenetic data. FINDINGS: M tuberculosis clinical strains had diverse growth characteristics in host-like metabolic and drug conditions. These fitness phenotypes were highly heritable, and we identified monogenic and phylogenetically linked variants associated with the fitness phenotypes. These data enabled us to define two genetic features that were associated with clinical outcomes. First, mutations in Rv1339, a phosphodiesterase, which were associated with slow growth in glycerol, were further associated with treatment failure (OR 5·34, 95% CI 1·21-23·58, p=0·027). Second, we identified a phenotypically distinct slow-growing subclade of lineage 1 strains (L1.1.1.1) that was associated with cavitary disease (OR 2·49, 1·11-5·59, p=0·027) and treatment failure (OR 4·76, 1·53-14·78, p=0·0069), and which had shorter terminal branch lengths on the phylogenetic tree, suggesting increased transmission. INTERPRETATION: Slow growth under various antibiotic and metabolic conditions served as in-vitro intermediate phenotypes underlying the association between M tuberculosis monogenic and phylogenetically linked mutations and outcomes such as cavitary disease, treatment failure, and transmission potential. These data suggest that M tuberculosis growth regulation is an adaptive advantage for bacterial success in human populations, at least in some circumstances. These data further suggest markers for the underlying bacterial processes that contribute to these clinical outcomes. FUNDING: National Health and Medical Research Council/A∗STAR, National Institutes of Allergy and Infectious Diseases, National Institute of Child Health and Human Development, and the Wellcome Trust Fellowship in Public Health and Tropical Medicine.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Vietnã/epidemiologia , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Estudo de Associação Genômica Ampla , Resultado do Tratamento , Fenótipo , Filogenia , Mutação , Fenômica , Genótipo , Feminino , Adulto , Masculino
6.
Nat Commun ; 15(1): 3088, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600064

RESUMO

Transcriptional regulation is a critical adaptive mechanism that allows bacteria to respond to changing environments, yet the concept of transcriptional plasticity (TP) - the variability of gene expression in response to environmental changes - remains largely unexplored. In this study, we investigate the genome-wide TP profiles of Mycobacterium tuberculosis (Mtb) genes by analyzing 894 RNA sequencing samples derived from 73 different environmental conditions. Our data reveal that Mtb genes exhibit significant TP variation that correlates with gene function and gene essentiality. We also find that critical genetic features, such as gene length, GC content, and operon size independently impose constraints on TP, beyond trans-regulation. By extending our analysis to include two other Mycobacterium species -- M. smegmatis and M. abscessus -- we demonstrate a striking conservation of the TP landscape. This study provides a comprehensive understanding of the TP exhibited by mycobacteria genes, shedding light on this significant, yet understudied, genetic feature encoded in bacterial genomes.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano/genética , Óperon/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Viruses ; 16(3)2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543829

RESUMO

Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.


Assuntos
Citosina/análogos & derivados , Herpesviridae , Herpesvirus Suídeo 1 , Organofosfonatos , Pseudorraiva , Doenças dos Suínos , Humanos , Animais , Camundongos , Suínos , Herpesvirus Suídeo 1/genética , Pseudorraiva/patologia , Replicação Viral , Proliferação de Células , Doenças dos Suínos/patologia
8.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422159

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Desidrogenase , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
9.
Vaccines (Basel) ; 12(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38400101

RESUMO

Community collaboration is a cornerstone of modern public health efforts. This work aimed to use community-engaged research to explore COVID-19 vaccination, testing, and infection in a minoritized community. This study was conducted in Miami, Florida, from March 2021 to February 2022 in community partner sites and the Miami Adult Studies on HIV (MASH) cohort. Sociodemographic characteristics, vaccination and testing beliefs, and COVID-19 challenges were self-reported. COVID-19 vaccinations were verified with medical records, testing history was self-reported, and severe acute respiratory syndrome coronavirus 2 positivity was determined via real-time reverse transcription-polymerase chain reaction (rt-PCR). Of 1689 participants, the median age was 57, 51% were male, 49% were non-Hispanic Black, 66% reported an income < USD 15,000/year, and 75.9% received at least one dose of a COVID-19 vaccine. Belief that COVID-19 vaccination is effective was associated with lower odds of COVID-19 positivity and was the strongest predictor of vaccination. Challenges accessing health care, housing, food, and transportation were associated with lower odds of vaccination. Employment, health insurance, higher education, and greater perceived test accuracy were associated with greater odds of COVID-19 testing. Social determinants of health and the belief that vaccines are effective and tests are accurate predicted behaviors and thus should be considered during public health crises in vulnerable communities.

10.
Int J Biol Macromol ; 262(Pt 2): 129984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342260

RESUMO

The ATP-binding cassette (ABC) transporters have crucial roles in various biological processes such as growth, development and immune defense in eukaryotes. However, the roles of ABC transporters in the immune system of crustaceans remain elusive. In this study, 38 ABC genes were systematically identified and characterized in Penaeus vannamei. Bioinformation analysis revealed that PvABC genes were categorized into ABC A-H eight subfamilies with 17 full-transporters, 11 half transporters and 10 soluble proteins, and multiple immunity-related cis-elements were found in gene promoter regions. Expression analysis showed that most PvABC genes were widely and highly expressed in immune-related tissues and responded to the stimulation of Vibrio parahaemolyticus. To investigate whether PvABC genes mediated innate immunity, PvABCC5, PvABCF1 and PvABCB4 were selected for dsRNA interference experiment. Knockdown of PvABCF1 and PvABCC5 not PvABCB4 increased the cumulative mortality of P. vannamei and bacterial loads in hepatopancreas after infection with V. parahaemolyticus. Further analysis showed that the PvABCF1 and PvABCC5 knockdown decreased expression levels of NF-κB pathway genes and antimicrobial peptides (AMPs). Collectively, these findings indicated that PvABCF1 and PvABCC5 might restrict V. parahaemolyticus challenge by positively regulating NF-κB pathway and then promoting the expression of AMPs, which would contribute to overall understand the function of ABC genes in innate immunity of invertebrates.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Vibrio parahaemolyticus/genética , Penaeidae/genética , Penaeidae/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Artrópodes/genética , Transdução de Sinais , Imunidade Inata/genética , Trifosfato de Adenosina/metabolismo
11.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260423

RESUMO

ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the most negatively correlated protein with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptor, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.

12.
Disabil Health J ; 17(2): 101571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38071138

RESUMO

BACKGROUND: People with disabilities face heightened vulnerability to COVID-19. OBJECTIVE: This study investigated (1) the relationships between disability and COVID-19-related challenges, testing, vaccination, and infection and (2) predictors of loss of healthcare coverage and postponement and avoidance of medical care during the pandemic. METHODS: This cross-sectional study was conducted in Miami, Florida, between March 2021 and February 2022 as part of the NIH Rapid Acceleration of Diagnostics-Underserved Populations initiative. Disability was defined using a standard measure that assesses six universal functions. Participants reported sociodemographic data, COVID-19 testing, infection history, challenges, and healthcare history. Vaccinations were confirmed with medical records and COVID-19 positivity was assessed using real-time reverse transcription-polymerase chain reaction. Statistical analyses included multivariable logistic regression. RESULTS: Among 1,689 participants with a median age of 57.0, 50.6% were male, and 48.9% were non-Hispanic Black. Disability was associated with greater odds of all assessed COVID-19 challenges: healthcare (aOR:1.60; 95% CI:1.23-2.07), housing (aOR:2.15; 95% CI:1.62-2.87), insufficient food (aOR:1.97; 95% CI:1.54-2.52), water scarcity (aOR:2.33; 95% CI:1.60-3.37), medications (aOR:2.04; 95% CI:1.51-2.77), and transportation (aOR:2.56; 95% CI:1.95-3.36). Those reporting employment disability were less likely to have received COVID-19 testing (81.1% vs. 85.3%, p = 0.026) or to have history of COVID-19 positivity (aOR:0.63; 95% CI:0.44-0.92). Disability predicted avoidance (aOR:2.76; 95% CI:1.95-3.91) and postponement (aOR: 2.24; 95% CI:1.72-2.91) of medical care. CONCLUSIONS: Disability is associated with higher odds of COVID-19 challenges and postponement and avoidance of medical care. Those reporting employment disability had a lower likelihood of COVID-19 testing. Public health responses to healthcare crises should prioritize the special challenges of people living with disabilities.


Assuntos
COVID-19 , Pessoas com Deficiência , Humanos , Masculino , Feminino , COVID-19/prevenção & controle , Teste para COVID-19 , Estudos Transversais , Vacinação
13.
Small ; 20(12): e2307104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939306

RESUMO

The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.


Assuntos
Bandagens , Hidrogéis , Bactérias , Biofilmes , Movimento Celular , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
14.
Adv Mater ; 36(5): e2311023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38050947

RESUMO

Electrocatalytic synthesis of amino acids provides a promising green and efficient pathway to manufacture the basic substances of life. Herein, reaction of 2,5-perfluroalkyl-terepthalohydrazide and tris(4-µ2 -O-carboxaldehyde-pyrazolato-N, N')-tricopper affords a crystalline trinuclear copper cluster-containing organic framework, named F-Cu3 -OF. Incorporation of abundant hydrophobic perfluroalkyl groups inside the channels of F-Cu3 -OF is revealed to successfully suppress the hydrogen evolution reaction via preventing H+ cation with large polarity from the framework of F-Cu3 -OF and in turn increasing the adsorption of other substrates with relatively small polarity like NO3 - and keto acids on the active sites. The copper atoms with short distance in the trinuclear copper clusters of F-Cu3 -OF enable simultaneous activization of NO3 - and keto acids, facilitating the following synergistic and efficient C─N coupling on the basis of in situ spectroscopic investigations together with theoretical calculation. Combination of these effects leads to efficient electroproduction of various amino acids including glycine, alanine, leucine, valine, and phenylalanine from NO3 - and keto acids with a Faraday efficiency of 42%-71% and a yield of 187-957 µmol cm-2 h-1 , representing the thus far best performance. This work shall be helpful for developing economical, eco-friendly, and high-efficiency strategy for the production of amino acids and other life substances.

15.
Analyst ; 149(3): 824-835, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38131268

RESUMO

Exploring highly active nanozymes is an important task to realize the real-time detection of some heavy metal ions in water. In this work, yolk-shell Co3S4 microspheres have been verified to possess excellent peroxidase-like activity, which can be further improved by adding Hg2+. Very interestingly, Hg2+ can trigger "ON" the oxidase-like activity of Co3S4 microspheres. The dual peroxidase-/oxidase-like activity of the yolk-shell Co3S4 microspheres is evaluated by using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Furthermore, comprehensive studies verify that the enhanced peroxidase-like activity, together with the "ON" oxidase-like activity of the yolk-shell Co3S4 microspheres, is attributed to the in situ generation of HgS on the surface of Co3S4 microspheres and then the release of more active sites. Importantly, the in situ generated HgS on the surface of Co3S4 microspheres can form a heterojunction, which also accelerates the catalytic process. During the catalytic reaction, some active species (O2- and h+) can be detected by ESR. Thus, a colorimetric sensing platform based on Hg2+-triggered signal amplification has been successfully constructed, which can be validated by the detection of Hg2+ residue in environmental water.


Assuntos
Mercúrio , Oxirredutases , Microesferas , Mercúrio/química , Peroxidases , Água , Colorimetria , Peróxido de Hidrogênio/química
16.
J Adv Res ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043610

RESUMO

INTRODUCTION: Golden pompano (Trachinotus ovatus) is economically significant important for offshore cage aquaculture in China and Southeast Asian countries. Lack of high-quality genomic data and accurate gene annotations greatly restricts its genetic breeding progress. OBJECTIVES: To decode the mechanisms of sex determination and rapid growth in golden pompano and facilitate the sex- and growth-aimed genetic breeding. METHODS: Genome assemblies of male and female golden pompano were generated using Illumina, PacBio, BioNano, genetic maps and Hi-C sequencing data. Genomic comparisons, whole genome re-sequencing of 202 F1 individuals, QTL mapping and gonadal transcriptomes were used to analyze the sex determining region, sex chromosome evolution, SNP loci, and growth candidate genes. Zebrafish model was used to investigate the functions of growth candidate gene. RESULTS: Female (644.45 Mb) and male (652.12 Mb) genomes of golden pompano were assembled and annotated at the chromosome level. Both genomes are highly conserved and no new or highly differentiated sex chromosomes occur. A 3.5 Mb sex determining region on LG15 was identified, where Hsd17b1, Micall2 and Lmx1a were putative candidates for sex determination. Three SNP loci significantly linked to growth were pinpointed, and a growth-linked gene gpsstr1 was identified by locus BSNP1369 (G â†’ C, 17489695, Chr23). Loss of sstr1a (homologue of gpsstr1) in zebrafish caused growth retardation. CONCLUSION: This study provides insights into sex chromosome evolution, sex determination and rapid growth of golden pompano.

17.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961690

RESUMO

Remove of mis-incorporated nucleotides ensures replicative fidelity. Although the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, proofreading in mycobacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase despite the presence of an alternative DnaQ homolog. Here, we show that depletion of DnaQ in Mycolicibacterium smegmatis results in increased mutation rate, leading to AT-biased mutagenesis and elevated insertions/deletions in homopolymer tract. We demonstrated that mycobacterial DnaQ binds to the b-clamp and functions synergistically with the PHP domain to correct replication errors. Further, we found that the mycobacterial DnaQ sustains replicative fidelity upon chromosome topological stress. Intriguingly, we showed that a naturally evolved DnaQ variant prevalent in clinical Mycobacterium tuberculosis isolates enables hypermutability and is associated with extensive drug resistance. These results collectively establish that the alternative DnaQ functions in proofreading, and thus reveal that mycobacteria deploy two proofreaders to maintain replicative fidelity.

18.
J Magn Reson ; 357: 107579, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949007

RESUMO

With the incidence of breast cancer rising to the top among female malignant tumors, magnetic resonance images guided breast biopsy intervention and minimally invasive treatment have developed as a clinically practical research issue. High field studies have shown the diagnostic value of breast MRI, but the examination costs greatly exceed those of competing conventional mammography. In this case, low-field MRI cannot merely provide typical MRI contrast, but also significantly reduce the cost of diagnosis and treatment for breast cancer patients. This work describes a unilateral breast coil and prototype intervention device, which provides a customized solution for low-field MRI-guided breast intervention. Results demonstrate that the low-field MRI breast intervention device facilitates medical intervention procedures. And the designed positioning device can locate the target lesion within 2-3 mm accuracy. Phantom tests with the customized unilateral coil indicate that the open loops perform as well as the 4-channel commercial closed breast coil, presenting a relatively good SNR (signal-to-noise ratio) and uniformity characteristics. MR scanning images of the volunteer breast using the breast intervention coil also show high SNR, which lays a foundation for further implementation of image-guided breast interventional minimally invasive surgery with the low-field MRI system.


Assuntos
Neoplasias da Mama , Mama , Feminino , Humanos , Mama/diagnóstico por imagem , Mama/cirurgia , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Razão Sinal-Ruído , Imagens de Fantasmas
19.
Nat Commun ; 14(1): 7658, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996471

RESUMO

The treatment of diabetic wounds faces enormous challenges due to complex wound environments, such as infected biofilms, excessive inflammation, and impaired angiogenesis. The critical role of the microenvironment in the chronic diabetic wounds has not been addressed for therapeutic development. Herein, we develop a microneedle (MN) bandage functionalized with dopamine-coated hybrid nanoparticles containing selenium and chlorin e6 (SeC@PA), which is capable of the dual-directional regulation of reactive species (RS) generation, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), in response to the wound microenvironment. The SeC@PA MN bandage can disrupt barriers in wound coverings for efficient SeC@PA delivery. SeC@PA not only depletes endogenous glutathione (GSH) to enhance the anti-biofilm effect of RS, but also degrades GSH in biofilms through cascade reactions to generate more lethal RS for biofilm eradication. SeC@PA acts as an RS scavenger in wound beds with low GSH levels, exerting an anti-inflammatory effect. SeC@PA also promotes the M2-phenotype polarization of macrophages, accelerating wound healing. This self-enhanced, catabolic and dynamic therapy, activated by the wound microenvironment, provides an approach for treating chronic wounds.


Assuntos
Diabetes Mellitus , Cicatrização , Humanos , Biofilmes , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo
20.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873410

RESUMO

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2 , which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulates Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13 C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2 , label preferentially accumulates in methylglyoxal precursors dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accumulated lactate toxicity via a methylglyoxal pathway that has been proposed previously. The evolved lldD2 variants increase lactate incorporation to pyruvate but also alter flux in the methylglyoxal pathway, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX-1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provide context for the selective advantage of lldD2 mutations in adapting to host stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...