Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 358: 120940, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38652994

RESUMO

The digital economy (DIE), a new economic form with digitalization at its core, has become an important driving force for promoting regional economy development. In the context of the COVID-19 pandemic, exploring the impact path of the DIE on carbon emission efficiency (CEE) is conducive to giving full play to the "carbon-reduction-and-efficiency-enhancement" role of the DIE, and to promoting the realization the "dual carbon" goal of carbon peak and carbon neutrality. In this paper, the Yellow River Basin (YRB) and the Yangtze River Economic Belt (YREB) are taken as study areas, the panel Tobit model is used to explore the impact of the DIE on CEE, and the intermediary-effect model and threshold-effect model are constructed to test the intermediary and threshold effects of technological innovation, respectively. The results show that the DIE has a U-shaped nonlinear impact on CEE in both the YRB and the YREB and that the impact has regional heterogeneity. Technological innovation can play a mediating effect between the DIE and CEE, whereas the mediating effect in the YRB is stronger than that in the YREB. Technological innovation has a threshold effect on the DIE to improve CEE, while the threshold value in the YREB is higher than that in the YRB. Furthermore, this paper proposes some suggestions to guide regional low-carbon and sustainable development.


Assuntos
COVID-19 , Carbono , Invenções , Desenvolvimento Econômico , China
2.
ACS Nano ; 18(19): 12134-12145, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687780

RESUMO

We explore the FeRh magnetic phase transition (MPT) and magnetic phase domain (MPD) with the introduction of surface acoustic waves (SAWs). The effects of the SAW pulses with different pulse widths and powers on resistance-temperature loops are investigated, revealing that the SAW can reduce the thermal hysteresis. Meanwhile, the SAW-induced comb-like antiferromagnetic (AFM) phase domains are observed. By changing the pulse width and SAW frequency, we further realize a writing-erasing process of the different comb-like AFM phase domains in the mixed-phase regime of the cooling transition branch. Resistance measurements also display the repeated SAW writing-erasing and the nonvolatile characteristic clearly. MPT paths are measured to demonstrate that short SAW pulses induce isothermal MPT and write magnetic phase patterns via the dynamic strain, whereas long SAW pulses erase patterns via the acoustothermal effect. The Preisach model is introduced to model the FeRh MPT under the SAW pulses, and the calculated results correspond well with our experiments, which reveals the SAW-induced energy modulation promotes FeRh MPT. COMSOL simulations of the SAW strain field also support our results. Our study not only can be used to reduce the thermal hysteresis but also extends the application of the SAW as a tool to write and erase AFM patterns for spintronics and magnonics.

3.
Math Biosci Eng ; 21(3): 4351-4369, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38549331

RESUMO

Biomedical images have complex tissue structures, and there are great differences between images of the same part of different individuals. Although deep learning methods have made some progress in automatic segmentation of biomedical images, the segmentation accuracy is relatively low for biomedical images with significant changes in segmentation targets, and there are also problems of missegmentation and missed segmentation. To address these challenges, we proposed a biomedical image segmentation method based on dense atrous convolution. First, we added a dense atrous convolution module (DAC) between the encoding and decoding paths of the U-Net network. This module was based on the inception structure and atrous convolution design, which can effectively capture multi-scale features of images. Second, we introduced a dense residual pooling module to detect multi-scale features in images by connecting residual pooling blocks of different sizes. Finally, in the decoding part of the network, we adopted an attention mechanism to suppress background interference by enhancing the weight of the target area. These modules work together to improve the accuracy and robustness of biomedical image segmentation. The experimental results showed that compared to mainstream segmentation networks, our segmentation model exhibited stronger segmentation ability when processing biomedical images with multiple-shaped targets. At the same time, this model can significantly reduce the phenomenon of missed segmentation and missegmentation, improve segmentation accuracy, and make the segmentation results closer to the real situation.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos
4.
Nat Commun ; 15(1): 1704, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402210

RESUMO

Outcome-guided behavior requires knowledge about the identity of future rewards. Previous work across species has shown that the dopaminergic midbrain responds to violations in expected reward identity and that the lateral orbitofrontal cortex (OFC) represents reward identity expectations. Here we used network-targeted transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) during a trans-reinforcer reversal learning task to test the hypothesis that outcome expectations in the lateral OFC contribute to the computation of identity prediction errors (iPE) in the midbrain. Network-targeted TMS aiming at lateral OFC reduced the global connectedness of the lateral OFC and impaired reward identity learning in the first block of trials. Critically, TMS disrupted neural representations of expected reward identity in the OFC and modulated iPE responses in the midbrain. These results support the idea that iPE signals in the dopaminergic midbrain are computed based on outcome expectations represented in the lateral OFC.


Assuntos
Mesencéfalo , Córtex Pré-Frontal , Córtex Pré-Frontal/fisiologia , Mesencéfalo/fisiologia , Recompensa , Reversão de Aprendizagem/fisiologia , Transdução de Sinais , Imageamento por Ressonância Magnética
5.
Environ Sci Pollut Res Int ; 30(57): 120120-120136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37936047

RESUMO

Exploring the allometric relationship between carbon emission and economic development can provide guidance for policy-makers who hope to accelerate carbon emission reduction and achieve high-quality development. First, based on the established DMSP/OLS and NPP/VIIRS nighttime light datasets, this study simulated the carbon emissions of the Yangtze River Delta from 2000 to 2020. Second, our research analyzed the spatiotemporal evolution characteristics of carbon emissions. Third, adopting allometric growth model, we explored the allometric relationship between economic development and carbon emissions in Yangtze River Delta. The main conclusions are as follows. First, four prediction models, namely, linear fitting, support vector machine, random forest, and CNN-BiLSTM deep learning, were compared to simulate the accuracy of carbon emissions. Consequently, the CNN-BiLSTM deep learning estimation model presented the best accuracy. Second, both the carbon emissions in YRD as a whole showed an increasing trend, with the largest growth rate appearing in Shanghai and the smallest growth rate occurring in Lishui. Moreover, the high-carbon emission areas were mainly distributed in the core city cluster, which are enclosed by Shanghai, Nanjing, and Hangzhou. Finally, the allometric relationship between economic development and carbon emissions was dominated by one-level negative during the sample period, and the relative growth rate of carbon emissions is lower than that of the economic development, which made the YRD at a basic coordinate stage of weak expansion of economy.


Assuntos
Desenvolvimento Econômico , Rios , Carbono/análise , Tecnologia de Sensoriamento Remoto , China , Cidades
6.
Artigo em Inglês | MEDLINE | ID: mdl-36982032

RESUMO

It is of great significance to study the interactive relationship between urban transportation and land use for promoting the healthy and sustainable development of cities. Taking Jinan, China, as an example, this study explored the interactive relationship between street centrality (SC) and land use intensity (LUI) in the main urban area of Jinan by using the spatial three-stage least squares method. The results showed that the closeness centrality showed an obvious "core-edge" pattern, which gradually decreased from the central urban area to the edge area. Both the betweenness centrality and the straightness centrality showed a multi-center structure. The commercial land intensity (CLUI) showed the characteristics of multi-core spatial distribution, while the residential land intensity (RLUI) and public service land intensity (PLUI) showed the characteristics of spatial distribution with the coexistence of large and small cores. There was an interactive relationship between SC and LUI. The closeness centrality and straightness centrality had positive effects on LUI, and LUI had a positive effect on closeness centrality and straightness centrality. The betweenness centrality had a negative impact on LUI, and LUI also had a negative impact on betweenness centrality. Moreover, good location factors and good traffic conditions were conducive to improving the closeness and straightness centrality of the regional traffic network. Good location factors, good traffic conditions and high population density were conducive to improving regional LUI.


Assuntos
Desenvolvimento Sustentável , Meios de Transporte , Cidades , China , Análise dos Mínimos Quadrados
7.
J Phys Condens Matter ; 35(14)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36735965

RESUMO

The spin torque nano-oscillator (STNO), a nanosize microwave signal generator, have caught the attention of a number of researchers due to its obvious advantages. Recently a chiral bulk material with twisted skyrmion has been discovered in studies with different helicity degrees. In this work, we design a new STNO based on twisted skyrmion existing in free layers of magnetic tunnel junction structure. We first investigate the effect of the magnetic moment of fixed layer on the twisted skyrmion and frequency of STNO. Although the magnetic moment of fixed layer does not affect the state of the twisted skyrmion but affects the precession frequency of STNO. Later, the current, external magnetic field and Dzyaloshinskii-Moriya interaction strength are changed to regulate the oscillation frequency of STNO. Our result may be favorable for the design of new twisted skyrmion-based STNO.

8.
J Phys Condens Matter ; 34(39)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35850114

RESUMO

Skyrmion bags as spin textures with arbitrary topological charge are expected to be the carriers in racetrack memory. Here, we theoretically and numerically investigated the dynamics of skyrmion bags in an anisotropy gradient. It is found that, without the boundary potential, the dynamics of skyrmion bags are dependent on the spin textures, and the velocity of skyrmionium withQ = 0 is faster than other skyrmion bags. However, when the skyrmion bags move along the boundary, the velocities of all skyrmion bags with differentQare same. In addition, we theoretically derived the dynamics of skyrmion bags in the two cases using the Thiele approach and discussed the scope of Thiele equation. Within a certain range, the simulation results are in good agreement with the analytically calculated results. Our findings provide an alternative way to manipulate the racetrack memory based on the skyrmion bags.

9.
Environ Sci Pollut Res Int ; 28(34): 47239-47250, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33891235

RESUMO

Methane is one of the main greenhouse trace gases and seriously affects the radiation balance of Earth systems due to its strong heat absorption capacity and long atmospheric retention time. Based on the methane stratification data simulated by the community atmospheric model with chemistry (CAM-chem), near-surface methane concentrations were estimated by utilizing the Gaussian function, and the spatiotemporal variation in the near-surface methane concentration in China from 2001 to 2019 was discussed in this research. The results show that (1) based on the methane stratification concentration data simulated by the atmospheric chemical model, the near-surface CH4 concentration estimated by Gaussian function model is reliable, which provides a new method to estimate the near-surface CH4 concentration over China; (2) from 2001 to 2019, the near-surface methane concentration in China showed an increasing trend with an annual growth rate of 7.20±0.23 ppb·a-1. The annual maximum near-surface methane concentration was measured in winter, and the minimum was measured in summer; (3) the spatial distribution differences are obvious: the methane concentration in the east was higher than that in the west, and the methane concentration in the north was higher than that in the south. Moreover, the distributions of methane in the east and west are consistent with the division of Hu Huanyong population line.


Assuntos
Dióxido de Carbono , Gases de Efeito Estufa , Dióxido de Carbono/análise , China , Gases de Efeito Estufa/análise , Metano/análise , Estações do Ano
10.
Nonlinear Dyn ; 106(2): 1169-1185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33758464

RESUMO

Recurrent outbreaks of the coronavirus disease 2019 (COVID-19) have occurred in many countries around the world. We developed a twofold framework in this study, which is composed by one novel descriptive model to depict the recurrent global outbreaks of COVID-19 and one dynamic model to understand the intrinsic mechanisms of recurrent outbreaks. We used publicly available data of cumulative infected cases from 1 January 2020 to 2 January 2021 in 30 provinces in China and 43 other countries around the world for model validation and further analyses. These time series data could be well fitted by the new descriptive model. Through this quantitative approach, we discovered two main mechanisms that strongly correlate with the extent of the recurrent outbreak: the sudden increase in cases imported from overseas and the relaxation of local government epidemic prevention policies. The compartmental dynamical model (Susceptible, Exposed, Infectious, Dead and Recovered (SEIDR) Model) could reproduce the obvious recurrent outbreak of the epidemics and showed that both imported infected cases and the relaxation of government policies have a causal effect on the emergence of a new wave of outbreak, along with variations in the temperature index. Meanwhile, recurrent outbreaks affect consumer confidence and have a significant influence on GDP. These results support the necessity of policies such as travel bans, testing of people upon entry, and consistency of government prevention and control policies in avoiding future waves of epidemics and protecting economy.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33429371

RESUMO

Magnetic skyrmions have been proposed as promising information carriers in the application of spintronics, while the material imperfections are inevitable, thus an understanding of pinning effects on skyrmions in confined geometry is crucial for both fundamental research and development of spintronic devices. Here, we present the interactions of a skyrmion with a point and an extended ring defect, in a Co nanodisk which can be applied in skyrmion oscillator, based on micromagnetic simulations. By comparing with the skyrmion preferred position which is in the nanodisk center without defects, we identify the pinning strength and skyrmion preferred positions with a point defect as a function of skyrmion-defect distance and different local parameters of defect region being considered. The pinning centers range from skyrmion center, domain wall and off-center regions. We find a confinement effect on the skyrmion size with a ring defect. Moreover, we also show the rotation of the skyrmion in the presence of a ring defect, that can lead to a variation of oscillation frequency in a large range. These findings provide a complete understanding of the interaction between skyrmion and defects in a nanodisk and may provide a guidance for the design of skyrmion oscillators.

12.
J Int Med Res ; 48(10): 300060520961683, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33045880

RESUMO

Spinal subarachnoid hemorrhage is a life-threatening condition often associated with markedly high morbidity and mortality rates. However, diagnosis is difficult because of its atypical symptoms. We herein describe a 52-year-old Chinese man who had been receiving warfarin therapy since having undergone mechanical mitral valve replacement surgery 3 years previously. Two days before admission to our hospital, he suddenly developed low back pain, urinary incontinence, and paraplegia. He was diagnosed with acute myelitis at a local hospital, but he subsequently developed a slight headache and was transferred to our hospital 2 days later. The patient was suspected to have subarachnoid hemorrhage based on his computed tomography (CT) findings. On the third day after admission, a CT scan showed both subarachnoid and cerebral hemorrhage. Blood tests revealed an international normalized ratio ranging from 1.44 to 1.86 and a prothrombin time of 16.5 to 21.3 s. We performed a lumbar puncture and obtained bloody cerebrospinal fluid. The patient also underwent spinal CT and angiography, which confirmed the diagnosis of spontaneous spinal subarachnoid hemorrhage. Because his general condition was poor, he underwent conservative treatment, and his neurologic function slightly improved after discharge.


Assuntos
Hemorragia Subaracnóidea , Varfarina , Diagnóstico Tardio , Humanos , Masculino , Pessoa de Meia-Idade , Punção Espinal , Coluna Vertebral , Hemorragia Subaracnóidea/diagnóstico por imagem , Varfarina/efeitos adversos
13.
J Phys Condens Matter ; 32(20): 205801, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31968317

RESUMO

The 2π isolated chiral skyrmion is a magnetic configuration. Since the total topological charge is zero, the 2π isolated skyrmion driven by a spin-polarized current propagates strictly along the racetrack. The manipulation of 2π-skyrmion, e.g., pinning/depinning at a specific position of the racetrack, is significant. Here, we investigated the 2π-skyrmion pinning in a racetrack using exchange bias. A series of transversal AFM wires were set above the ferromagnetic (FM) racetrack. Spin waves were employed to induce 2π-skyrmion motion to study the dynamics of the 2π-skyrmion pinning. The AFM wires induce exchange bias at the AFM/FM crossing points, which can act as pinning sites. The working window for a 2π-skyrmion in a racetrack was investigated as a function of the exchange bias field, the frequency and amplitude of the oscillating magnetic field for exciting spin waves. The interaction mechanism between the 2π-skyrmion and the exchange bias was also studied. This work may provide guidance for the design of next-generation spintronics.

14.
Cereb Cortex ; 29(2): 732-750, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373633

RESUMO

Intertemporal choice requires a dynamic interaction between valuation and deliberation processes. While evidence identifying candidate brain areas for each of these processes is well established, the precise mechanistic role carried out by each brain region is still debated. In this article, we present a computational model that clarifies the unique contribution of frontoparietal cortex regions to intertemporal decision making. The model we develop samples reward and delay information stochastically on a moment-by-moment basis. As preference for the choice alternatives evolves, dynamic inhibitory processes are executed by way of asymmetric lateral inhibition. We find that it is these lateral inhibition processes that best explain the contribution of frontoparietal regions to intertemporal decision making exhibited in our data.


Assuntos
Desvalorização pelo Atraso/fisiologia , Lobo Frontal/fisiologia , Modelos Psicológicos , Lobo Parietal/fisiologia , Autocontrole/psicologia , Adolescente , Adulto , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa/métodos , Adulto Jovem
15.
ACS Appl Mater Interfaces ; 10(42): 36556-36563, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30277060

RESUMO

Recently, magnetic skyrmion has attracted much attention due to its potential application in racetrack memory and other nanodevices. In bulk chiral magnets with non-centrosymmetric crystal structures, skyrmion lattice phase has been extensively observed. However, in film or multilayers with interfacial Dzyaloshinskii-Moriya interaction, individual skyrmion is often observed. Here, we report a short-ordered skyrmion lattice observed in [Ta(5.0 nm)/CoFeB(1.5 nm)/MgO(1.0 nm)]15 multilayer in a remnant state. The structure, stabilization, and reversal of these skyrmions are discussed. Applying a slightly tilted in-plane magnetic field caused reversal of the skyrmion lattice. This reversal came from disappearance of skyrmions and nucleation of new skyrmions in the interstitial regions of the lattice. Also, we investigated how the skyrmion lattice depended on the CoFeB thickness. Our findings provide a pathway to stabilize and reverse the skyrmions in multilayers films.

16.
Sci Rep ; 8(1): 7916, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784934

RESUMO

Carbon or nitrogen doped cobalt ferrite nanoparticles were synthesized in the air by a facile calcination process. X-ray diffraction, mapping, X-ray photoelectron spectroscopy, and mössbauer spectra results indicate that the nonmetal elements as the interstitial one are doped into cobalt ferrite nanoparticles. The morphologies of doped cobalt ferrite nanoparticles change from near-spherical to irregular cubelike shapes gradually with the increased carbon or nitrogen concentration, and their particles sizes also increase more than 200 nm. Furthermore, the saturation magnetization of carbon doped cobalt ferrite is improved. Although the saturation magnetization of N-doped cobalt ferrite is not enhanced obviously due to the involved hematite, they also do not drop drastically. The results reveal an approach to synthesize large scale ferrite nanoparticles, and improve the magnetic properties of ferrite nanoparticles, and also provide the potential candidates to synthesis co-doped functional magnetic materials.

17.
Sci Total Environ ; 574: 1665-1673, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27614858

RESUMO

Nitrogen (N) and phosphorus (P) fertilization has the potential to alter soil respiration temperature sensitivity (Q10) by changing soil biochemical and crop physiological process. A four-year field experiment was conducted to determine how Q10 responded to these biochemical and physiological changes in rain-fed agro-ecosystems on the semi-arid Loess Plateau. Soil respiration, as well as biotic and abiotic factors were measured in winter wheat (Triticum aestivum L.), with three fertilization treatments: (no fertilization (CK), 160kgNhm-1 (N), and 160kgNha-1 with 39kgPha-1 (N+P). Mean annual soil respiration rate (calculated by averaging the four years) in the N treatment and N+P treatment was 18% and 48% higher than that in the CK treatment, respectively; and it was increased by 26% (14%-48%) in the N+P treatment as compared with that in the N treatment. The decrease of Q10 in the N and N+P treatments against the CK treatment was not stable for each year, ranging from 0.01 to 0.28. The maximum decrease of Q10 in the N and N+P treatments was 10% and 15% in 2014-2015, while in other years the decrease of Q10 was numerical but not significant. Soil microbial biomass carbon (SMBC) was increased by 10% and 50%, dissolved organic carbon (DOC) was increased by 6% and 21%, and photosynthesis rate was increased ranging from 6% to 33% with N and N+P fertilization. The relative abundance of Acidobacteria, Actinobacteria and Chloroflexi were significantly higher by 32.9%-54.1% in N addition soils (N and N+P) compared to CK treatment, whereas additional P application into soils increased the relative abundance of the family Micrococcaceae, Nocardioidaceae and Chitinophagaceae. Soil respiration was positively related to SMBC, DOC and photosynthesis rate (p<0.05). However, variation in Q10 may be related to the increase of soil mineral N content and variation of the relative abundance of soil microbial community in our study. Nitrogen and additional phosphorus fertilization regimes affect soil respiration and temperature sensitivity differently.

18.
PLoS One ; 11(12): e0168599, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992576

RESUMO

Nitrogen (N) fertilization has a considerable effect on food production and carbon cycling in agro-ecosystems. However, the impacts of N fertilization rates on the temperature sensitivity of soil respiration (Q10) were controversial. Five N rates (N0, N45, N90, N135, and N180) were applied to a continuous winter wheat (Triticum aestivum L.) crop on the semi-arid Loess Plateau, and the in situ soil respiration was monitored during five consecutive years from 2008 to 2013. During the growing season, the mean soil respiration rates increased with increasing N fertilization rates, peaking at 1.53 µmol m-2s-1 in the N135 treatment. A similar dynamic pattern was observed during the non-growing season, yet on average with 7.3% greater soil respiration rates than the growing season. In general for all the N fertilization treatments, the mean Q10 value during the non-growing season was significantly greater than that during the growing season. As N fertilization rates increased, the Q10 values did not change significantly in the growing season but significantly decreased in the non-growing season. Overall, N fertilization markedly influenced soil respirations and Q10 values, in particular posing distinct effects on the Q10 values between the growing and non-growing seasons.


Assuntos
Fertilizantes/análise , Nitrogênio/análise , Solo/química , Triticum/crescimento & desenvolvimento , Biomassa , Ecossistema , Monitoramento Ambiental , Estações do Ano , Temperatura
19.
Sci Rep ; 6: 37701, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27876878

RESUMO

Iron-nickel (Fe-Ni) alloy nanoribbons were reported for the first time by deoxidizing NiFe2O4 nanoribbons, which were synthesized through a handy route of electrospinning followed by air-annealing at 450 °C, in hydrogen (H2) at different temperatures. It was demonstrated that the phase configurations, microstructures and magnetic properties of the as-deoxidized samples closely depended upon the deoxidization temperature. The spinel NiFe2O4 ferrite of the precursor nanoribbons were firstly deoxidized into the body-centered cubic (bcc) Fe-Ni alloy and then transformed into the face-centered cubic (fcc) Fe-Ni alloy of the deoxidized samples with the temperature increasing. When the deoxidization temperature was in the range of 300 ~ 500 °C, although each sample possessed its respective morphology feature, all of them completely reserved the ribbon-like structures. When it was further increased to 600 °C, the nanoribbons were evolved completely into the fcc Fe-Ni alloy nanochains. Additionally, all samples exhibited typical ferromagnetism. The saturation magnetization (Ms) firstly increased, then decreased, and finally increased with increasing the deoxidization temperature, while the coercivity (Hc) decreased monotonously firstly and then basically stayed unchanged. The largest Ms (~145.7 emu·g-1) and the moderate Hc (~132 Oe) were obtained for the Fe-Ni alloy nanoribbons with a mixed configuration of bcc and fcc phases.

20.
Sci Rep ; 6: 32360, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581732

RESUMO

We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...