Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
MedComm (2020) ; 5(4): e518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525111

RESUMO

Perineural invasion (PNI) leads to the poor prognosis of head and neck squamous cancer (HNSCC) patients, but the mechanism of PNI remains unclear. Dickkopf-1 (DKK1), a secretory protein in the Wnt signaling pathway, was found indeed upregulated in HNSCC cells and tissues. Higher expression of DKK1 was statistically relevant to T stage, N stage, PNI, and poor prognosis of HNSCC. DKK1 overexpression enhanced the migration abilities of cancer cells. Moreover, DKK1-overexpressing cancer cells promoted cancer cells invasion of peripheral nerves in vitro and in vivo. Mechanistically, DKK1 could promote the PI3K-AKT signaling pathway. The migration abilities of neuroblastoma cells, which were enhanced by DKK1-overexpressing HNSCC cell lines, could be reversed by an inhibitor of Akt (MK2206). The association of DKK1 with PNI was also confirmed in HNSCC samples. Variables, including T stage, N stage, DKK1 expression, and PNI, were used to establish a nomogram to predict the survival probability and disease-free probability at 3 and 5 years. In summary, DKK1 can promote the PI3K-AKT signaling pathway in tumor cells and then could induce neuritogenesis and facilitate PNI. MK2206 may be a potential therapeutic target drug for HNSCC patients with PNI.

2.
Protein Sci ; 33(2): e4895, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38284490

RESUMO

Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico , Luciferases , Proteínas de Choque Térmico/química , Escherichia coli/metabolismo , Dobramento de Proteína , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Bactérias/química , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química
3.
Nat Commun ; 14(1): 2745, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173314

RESUMO

Proteins of the Hsp110 family are molecular chaperones that play important roles in protein homeostasis in eukaryotes. The pathogenic fungus Candida albicans, which causes infections in humans, has a single Hsp110, termed Msi3. Here, we provide proof-of-principle evidence supporting fungal Hsp110s as targets for the development of new antifungal drugs. We identify a pyrazolo[3,4-b] pyridine derivative, termed HLQ2H (or 2H), that inhibits the biochemical and chaperone activities of Msi3, as well as the growth and viability of C. albicans. Moreover, the fungicidal activity of 2H correlates with its inhibition of in vivo protein folding. We propose 2H and related compounds as promising leads for development of new antifungals and as pharmacological tools for the study of the molecular mechanisms and functions of Hsp110s.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Chaperonas Moleculares , Dobramento de Proteína
4.
J Biomol Struct Dyn ; 41(24): 14929-14938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37042961

RESUMO

Antibodies that recognize the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially the neutralizing antibodies, carry great hope in the treatment and final elimination of COVID-19. Driven by a synchronized global effort, thousands of antibodies against the spike protein have been identified during the past two years, with the structural information available at atomistic detail for hundreds of these antibodies. We developed an improved molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method including explicitly treated interfacial water to calculate the binding free energy between representative antibodies and the receptor binding domain (RBD) domain of SARS-COV-2 spike proteins. We discovered that explicit treatment of water molecules located at the interface between RBD and antibody effectively improves the results for the WT and variants of concern (VOC) systems. Interfacial water molecules, together with surface and internal water molecules, behave drastically from bulk water and exert peculiar impacts on protein dynamics and energy, and thus warrant explicit treatment to complement implicit solvent models. Our results illustrate the importance of including interfacial water molecules to approach efficient and reliable prediction of binding free energy.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Água , SARS-CoV-2 , Anticorpos Neutralizantes , Ligação Proteica
5.
Photochem Photobiol Sci ; 22(6): 1323-1340, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36753022

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has been on a rampage for more than two years. Vaccines in combination with neutralizing antibodies (NAbs) against SARS-CoV-2 carry great hope in the treatment and final elimination of coronavirus disease 2019 (COVID-19). However, the relentless emergence of variants of concern (VOC), including the most recent Omicron variants, presses for novel measures to counter these variants that often show immune evasion. Hereby we developed a targeted photodynamic approach to neutralize SARS-CoV-2 by engineering a genetically encoded photosensitizer (SOPP3) to a diverse list of antibodies targeting the wild-type (WT) spike protein, including human antibodies isolated from a 2003 Severe acute respiratory syndrome (SARS) patient, potent monomeric and multimeric nanobodies targeting receptor-binding domain (RBD), and non-neutralizing antibodies (non-NAbs) targeting the more conserved N-terminal domain (NTD). As confirmed by pseudovirus neutralization assay, this targeted photodynamic approach significantly increased the efficacy of these antibodies, especially that of non-NAbs, against not only the WT but also the Delta strain and the heavily immune escape Omicron strain (BA.1). Subsequent measurement of infrared phosphorescence at 1270 nm confirmed the generation of singlet oxygen (1O2) in the photodynamic process. Mass spectroscopy assay uncovered amino acids in the spike protein targeted by 1O2. Impressively, Y145 and H146 form an oxidization "hotspot", which overlaps with the antigenic "supersite" in NTD. Taken together, our study established a targeted photodynamic approach against the SARS-CoV-2 virus and provided mechanistic insights into the photodynamic modification of protein molecules mediated by 1O2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Oxigênio Singlete , Glicoproteína da Espícula de Coronavírus
7.
Protein Sci ; 31(4): 797-810, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34941000

RESUMO

Hsp70s are ubiquitous and highly conserved molecular chaperones. They play crucial roles in maintaining cellular protein homeostasis. It is well established that Hsp70s use the energy of ATP hydrolysis to ADP to power the chaperone activity regardless of the cellular locations and isoforms. Binding immunoglobin protein (BiP), the major member of Hsp70s in the endoplasmic reticulum, is essential for protein folding and quality control. Unexpectedly, our structural analysis of BiP demonstrated a novel ATP hydrolysis to AMP during crystallization under the acidic conditions. Our biochemical studies confirmed this newly discovered ATP to AMP hydrolysis in solutions. Unlike the canonical ATP to ADP hydrolysis observed for Hsp70s, this ATP hydrolysis to AMP depends on the substrate-binding domain of BiP and is inhibited by the binding of a peptide substrate. Intriguingly, this ATP to AMP hydrolysis is unique to BiP, not shared by two representative Hsp70 proteins from the cytosol. Taken together, this novel and unique ATP to AMP hydrolysis may provide a potentially new direction for understanding the activity and cellular function of BiP.


Assuntos
Proteínas de Transporte , Proteínas de Choque Térmico HSP70 , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/química , Humanos , Hidrólise , Ligação Proteica
8.
Mol Cell ; 81(19): 3919-3933.e7, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34453889

RESUMO

Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70R-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70S-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico HSP70/genética , Hidrólise , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
9.
J Biol Chem ; 297(3): 101082, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34403698

RESUMO

Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDß interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDß contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , Candida albicans/genética , Candida albicans/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Nucleotídeos/metabolismo , Ligação Proteica/genética , Domínios Proteicos/genética , Dobramento de Proteína
10.
Cell Stress Chaperones ; 26(4): 695-704, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34047887

RESUMO

Hsp110s are unique and essential molecular chaperones in the eukaryotic cytosol. They play important roles in maintaining cellular protein homeostasis. Candida albicans is the most prevalent yeast opportunistic pathogen that causes fungal infections in humans. As the only Hsp110 in Candida albicans, Msi3 is essential for the growth and infection of Candida albicans. In this study, we have expressed and purified Msi3 in nucleotide-free state and carried out biochemical analyses. Sse1 is the major Hsp110 in budding yeast S. cerevisiae and the best characterized Hsp110. Msi3 can substitute Sse1 in complementing the temperature-sensitive phenotype of S. cerevisiae carrying a deletion of SSE1 gene although Msi3 shares only 63.4% sequence identity with Sse1. Consistent with this functional similarity, the purified Msi3 protein shares many similar biochemical activities with Sse1 including binding ATP with high affinity, changing conformation upon ATP binding, stimulating the nucleotide-exchange for Hsp70, preventing protein aggregation, and assisting Hsp70 in refolding denatured luciferase. These biochemical characterizations suggested that Msi3 can be used as a model for studying the molecular mechanisms of Hsp110s.


Assuntos
Candida albicans/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
Front Physiol ; 11: 1081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041844

RESUMO

Pulmonary arterial hypertension (PAH) is a multifactorial and progressive disorder. This disease is characterized by vasoconstriction and vascular remodeling, which results in increased pulmonary artery pressure and pulmonary vascular resistance. Although extensive studies have been carried out to understand the etiology, it is still unclear what intracellular factors contribute and integrate these pathological features. Heat shock protein 90 (Hsp90), a ubiquitous and essential molecular chaperone, is involved in the maturation of many proteins. An increasing number of studies have revealed direct connections between abnormal Hsp90 expression and cellular factors related to PAH, such as soluble guanylate cyclase and AMP-activated protein kinase. These studies suggest that the Hsp90 regulatory network is a major predictor of poor outcomes, providing novel insights into the pathogenesis of PAH. For the first time, this review summarizes the interplay between the Hsp90 dysregulation and different proteins involved in PAH development, shedding novel insights into the intrinsic pathogenesis and potentially novel therapeutic strategies for this devastating disease.

12.
J Med Chem ; 63(19): 11215-11234, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32914624

RESUMO

Current pulmonary arterial hypertension (PAH) therapeutic strategies mainly focus on vascular relaxation with less emphasis on vascular remodeling, which results in poor prognosis. Hence, dual pathway regulators with vasodilation effect via soluble guanylate cyclase (sGC) stimulation and vascular remodeling regulation effect by AMP-activated protein kinase (AMPK) inhibition provide more advantages and potentialities. Herein, we designed and synthesized a series of novel pyrazolo[3,4-b] pyridine derivatives based on sGC stimulator and AMPK inhibitor scaffolds. In vitro, 2 exhibited moderate vasodilation activity and higher proliferation and migration suppressive effects compared to riociguat. In vivo, 2 significantly decreased right ventricular systolic pressure (RVSP), attenuated pulmonary artery medial thickness (PAMT), and right ventricular hypertrophy (RVH) in hypoxia-induced PAH rat models (i.g.). Given the unique advantages of significant vascular remodeling inhibition and moderate vascular relaxation based on the dual pathway regulation, we proposed 2 as a promising lead for anti-PAH drug discovery.


Assuntos
Desenho de Fármacos , Hipertensão Pulmonar/tratamento farmacológico , Pirazóis/química , Piridinas/química , Remodelação Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Adenilato Quinase/antagonistas & inibidores , Adenilato Quinase/metabolismo , Animais , Linhagem Celular , Humanos , Pirazóis/farmacologia , Piridinas/farmacologia , Ratos , Relação Estrutura-Atividade
13.
ACS Chem Neurosci ; 11(6): 851-863, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32078767

RESUMO

The photodynamic process requires three elements: light, oxygen, and photosensitizer, and involves the formation of singlet oxygen, the molecular oxygen in excited electronic states. Previously, we reported that heterologously expressed hyperpolarization-activated cAMP-gated (HCN) channels in excised membrane patches are sensitive to photodynamic modification (PDM). Here we extend this study to native HCN channels expressed in thalamocortical (TC) neurons in the ventrobasal (VB) complex of the thalamus and dopaminergic neurons (DA) of the ventral tegmental area (VTA). To do this, we introduced the photosensitizer FITC-cAMP into TCs or DAs of rodent brain slices via a whole-cell patch-clamp recording pipette. After illumination with blue light pulses, we observed an increase in the voltage-insensitive, instantaneous Iinst component, accompanied by a long-lasting decrease in the hyperpolarization-dependent Ih component. Both Ih and the increased Iinst after PDM could be blocked by the HCN blockers Cs+ and ZD7288. When FITC and cAMP were dissociated and loaded into neurons as two separate chemicals, light application did not result in any long-lasting changes of the HCN currents. In contrast, light pulses applied to HCN2-/- neurons loaded with FITC-cAMP generated a much greater reduction in the Iinst component compared to that of WT neurons. Next, we investigated the impact of the long-lasting increases in Iinst after PDM on the cellular physiology of VB neurons. Consistent with an upregulation of HCN channel function, PDM elicited a depolarization of the resting membrane potential (RMP). Importantly, Trolox-C, an effective quencher for singlet oxygen, could block the PDM-dependent increase in Iinst and depolarization of the RMP. We propose that PDM of native HCN channels under physiological conditions may provide a photodynamic approach to alleviate HCN channelopathy in certain pathological conditions.


Assuntos
Córtex Cerebral , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Neurônios , Animais , Córtex Cerebral/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Tálamo/metabolismo
14.
Protein Sci ; 29(2): 378-390, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31509306

RESUMO

As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.


Assuntos
Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
15.
J Biol Chem ; 295(2): 584-596, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806707

RESUMO

Heat shock proteins of 70 kDa (Hsp70s) are ubiquitous and highly conserved molecular chaperones. They play multiple essential roles in assisting with protein folding and maintaining protein homeostasis. Their chaperone activity has been proposed to require several rounds of binding to and release of polypeptide substrates at the substrate-binding domain (SBD) of Hsp70s. All available structures have revealed a single substrate-binding site in the SBD that binds a single segment of an extended polypeptide of 3-4 residues. However, this well-established single peptide-binding site alone has made it difficult to explain the efficient chaperone activity of Hsp70s. In this study, using purified proteins and site-directed mutagenesis, along with fluorescence polarization and luciferase-refolding assays, we report the unexpected discovery of a second peptide-binding site in Hsp70s. More importantly, the biochemical analyses suggested that this novel binding site, named here P2, is essential for Hsp70 chaperone activity. Furthermore, cross-linking and mutagenesis studies indicated that this second binding site is in the SBD adjacent to the first binding site. Taken together, our results suggest that these two essential binding sites of Hsp70s cooperate in protein folding.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/metabolismo , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Especificidade por Substrato
16.
J Gen Physiol ; 151(2): 200-213, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30541772

RESUMO

Hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channels are nonselective cation channels that regulate electrical activity in the heart and brain. Previous studies of mouse HCN2 (mHCN2) channels have shown that cAMP binds preferentially to and stabilizes these channels in the open state-a simple but elegant implementation of ligand-dependent gating. Distinct from mammalian isoforms, the sea urchin (spHCN) channel exhibits strong voltage-dependent inactivation in the absence of cAMP. Here, using fluorescently labeled cAMP molecules as a marker for cAMP binding, we report that the inactivated spHCN channel displays reduced cAMP binding compared with the closed channel. The reduction in cAMP binding is a voltage-dependent process but proceeds at a much slower rate than the movement of the voltage sensor. A single point mutation in the last transmembrane domain near the channel's gate, F459L, abolishes inactivation and concurrently reverses the response to hyperpolarizing voltage steps from a decrease to an increase in cAMP binding. ZD7288, an open channel blocker that interacts with a region close to the activation/inactivation gate, dampens the reduction of cAMP binding to inactivated spHCN channels. In addition, compared with closed and "locked" closed channels, increased cAMP binding is observed in channels purposely locked in the open state upon hyperpolarization. Thus, the order of cAMP-binding affinity, measured by the fluorescence signal from labeled cAMP, ranges from high in the open state to intermediate in the closed state to low in the inactivated state. Our work on spHCN channels demonstrates intricate state-dependent communications between the gate and ligand-binding domain and provides new mechanistic insight into channel inactivation/desensitization.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Animais , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Potenciais da Membrana , Camundongos , Mutação Puntual , Ligação Proteica , Domínios Proteicos , Ouriços-do-Mar , Xenopus
17.
J Gen Physiol ; 150(9): 1273-1286, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30042141

RESUMO

Photochemically or metabolically generated singlet oxygen (1O2) reacts broadly with macromolecules in the cell. Because of its short lifetime and working distance, 1O2 holds potential as an effective and precise nanoscale tool for basic research and clinical practice. Here we investigate the modification of the spHCN channel that results from photochemically and chemically generated 1O2 The spHCN channel shows strong voltage-dependent inactivation in the absence of cAMP. In the presence of photosensitizers, short laser pulses transform the gating properties of spHCN by abolishing inactivation and increasing the macroscopic current amplitude. Alanine replacement of a histidine residue near the activation gate within the channel's pore abolishes key modification effects. Application of a variety of chemicals including 1O2 scavengers and 1O2 generators supports the involvement of 1O2 and excludes other reactive oxygen species. This study provides new understanding about the photodynamic modification of ion channels by 1O2 at the molecular level.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Oxigênio/metabolismo , Animais , AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Oócitos , Técnicas de Patch-Clamp , Mutação Puntual , Rosa Bengala , Ouriços-do-Mar , Xenopus laevis
18.
J Physiol ; 596(7): 1259-1276, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29327340

RESUMO

KEY POINTS: Shank3 increases the HCN channel surface expression in heterologous expression systems. Shank3Δ13-16 deficiency causes significant reduction in HCN2 expression and Ih current amplitude in thalamocortical (TC) neurons. Shank3Δ13-16 - but not Shank3Δ4-9 -deficient TC neurons share changes in basic electrical properties which are comparable to those of HCN2-/- TC neurons. HCN channelopathy may critically mediate events downstream from Shank3 deficiency. ABSTRACT: SHANK3 is a scaffolding protein that is highly enriched in excitatory synapses. Mutations in the SHANK3 gene have been linked to neuropsychiatric disorders especially the autism spectrum disorders. SHANK3 deficiency is known to cause impairments in synaptic transmission, but its effects on basic neuronal electrical properties that are more localized to the soma and proximal dendrites remain unclear. Here we confirmed that in heterologous expression systems two different mouse Shank3 isoforms, Shank3A and Shank3C, significantly increase the surface expression of the mouse hyperpolarization-activated, cyclic-nucleotide-gated (HCN) channel. In Shank3Δ13-16 knockout mice, which lack exons 13-16 in the Shank3 gene (both Shank3A and Shank3C are removed) and display a severe behavioural phenotype, the expression of HCN2 is reduced to an undetectable level. The thalamocortical (TC) neurons from the ventrobasal (VB) complex of Shank3Δ13-16 mice demonstrate reduced Ih current amplitude and correspondingly increased input resistance, negatively shifted resting membrane potential, and abnormal spike firing in both tonic and burst modes. Impressively, these changes closely resemble those of HCN2-/- TC neurons but not of the TC neurons from Shank3Δ4-9 mice, which lack exons 4-9 in the Shank3 gene (Shank3C still exists) and demonstrate moderate behavioural phenotypes. Additionally, Shank3 deficiency increases the ratio of excitatory/inhibitory balance in VB neurons but has a limited impact on the electrical properties of connected thalamic reticular (RTN) neurons. These results provide new understanding about the role of HCN channelopathy in mediating detrimental effects downstream from Shank3 deficiency.


Assuntos
Potenciais de Ação , Córtex Cerebral/patologia , Canalopatias/patologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/patologia , Canais de Potássio/fisiologia , Tálamo/patologia , Animais , Córtex Cerebral/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Neurônios/metabolismo , Tálamo/metabolismo , Xenopus laevis
19.
Nat Commun ; 8(1): 1201, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29084938

RESUMO

Cellular protein homeostasis depends on heat shock proteins 70 kDa (Hsp70s), a class of ubiquitous and highly conserved molecular chaperone. Key to the chaperone activity is an ATP-induced allosteric regulation of polypeptide substrate binding and release. To illuminate the molecular mechanism of this allosteric coupling, here we present a novel crystal structure of an intact human BiP, an essential Hsp70 in ER, in an ATP-bound state. Strikingly, the polypeptide-binding pocket is completely closed, seemingly excluding any substrate binding. Our FRET, biochemical and EPR analysis suggests that this fully closed conformation is the major conformation for the ATP-bound state in solution, providing evidence for an active release of bound polypeptide substrates following ATP binding. The Hsp40 co-chaperone converts this fully closed conformation to an open conformation to initiate productive substrate binding. Taken together, this study provided a mechanistic understanding of the dynamic nature of the polypeptide-binding pocket in the Hsp70 chaperone cycle.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Peptídeos/metabolismo , Trifosfato de Adenosina , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Chaperona BiP do Retículo Endoplasmático , Glicina/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
20.
Data Brief ; 10: 525-530, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070540

RESUMO

Human BiP/GRP78 is involved in the folding and assembly of proteins in the endoplasmic reticulum. The proteins for crystallization in good amount and quality are prerequisites for obtaining ideal crystals. To meet these requirements, different BiP/GRP78 constructs, competent cells, vectors, and concentrations of inducer were tested in order to obtain soluble BiP/GRP78 protein with the highest amount and best purity. The BiP-T229A-L3,4'-Smt3 fusion protein was expressed in a soluble manner and finally purified with the highest purity using size exclusion chromatography, which was suitable for further protein crystallization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...