Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
Eur J Med Chem ; 276: 116694, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39047607

RESUMO

As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.

2.
Eur J Med Chem ; 276: 116678, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39029337

RESUMO

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.

3.
Int J Biol Macromol ; : 134231, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074699

RESUMO

To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.

4.
Animal Model Exp Med ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39017036

RESUMO

BACKGROUND: The role of Claudin-1 in tongue squamous cell carcinoma (TSCC) metastasis needs further clarification, particularly its impact on cell migration. Herein, our study aims to investigate the role of Claudin-1 in TSCC cell migration and its underlying mechanisms. METHODS: 36 TSCC tissue samples underwent immunohistochemical staining for Claudin-1. Western blotting and immunofluorescence analyses were conducted to evaluate Claudin-1 expression and distribution in TSCC cells. Claudin-1 knockdown cell lines were established using short hairpin RNA transfection. Migration effects were assessed through wound healing assays. Furthermore, the expression of EMT-associated molecules was measured via western blotting. RESULTS: Claudin-1 expression decreased as TSCC malignancy increased. Adenosine monophosphate-activated protein kinase (AMPK) activation led to increased Claudin-1 expression and membrane translocation, inhibiting TSCC cell migration and epithelial-mesenchymal transition (EMT). Conversely, Claudin-1 knockdown reversed these inhibitory effects on migration and EMT caused by AMPK activation. CONCLUSIONS: Our results indicated that AMPK activation suppresses TSCC cell migration by targeting Claudin-1 and EMT pathways.

5.
ACS Appl Mater Interfaces ; 16(24): 31348-31362, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38833382

RESUMO

Today's computing systems, to meet the enormous demands of information processing, have driven the development of brain-inspired neuromorphic systems. However, there are relatively few optoelectronic devices in most brain-inspired neuromorphic systems that can simultaneously regulate the conductivity through both optical and electrical signals. In this work, the Au/MXene/Y:HfO2/FTO ferroelectric memristor as an optoelectronic artificial synaptic device exhibited both digital and analog resistance switching (RS) behaviors under different voltages with a good switching ratio (>103). Under optoelectronic conditions, optimal weight update parameters and an enhanced algorithm achieved 97.1% recognition accuracy in convolutional neural networks. A new logic gate circuit specifically designed for optoelectronic inputs was established. Furthermore, the device integrates the impact of relative humidity to develop an innovative three-person voting mechanism with a veto power. These results provide a feasible approach for integrating optoelectronic artificial synapses with logic-based computing devices.

6.
Animals (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38929441

RESUMO

Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.

7.
Pestic Biochem Physiol ; 202: 105967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879344

RESUMO

Coumarin is a natural product known for its diverse biological activities. While its antifungal properties in agricultural chemistry have been extensively studied, there is limited research on its antibacterial potential. In this study, we developed several novel coumarin derivatives by combining coumarin with pyridinium salt through molecular hybridization and chemical synthesis. Our findings reveal that most of these derivatives exhibit promising antibacterial activity. Among them, derivative A25 has been identified as the most effective compound based on three-dimensional quantitative structure-activity relationships. It demonstrates significant in vitro and in vivo activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc), and Xanthomonas campestris pv. citri (Xac), outperforming the commercially available thiediazole copper. Initial investigations into its mechanism of action suggest that A25 disrupts the cell membranes of Xoc and Xoo, thereby inhibiting bacterial growth. Additionally, A25 enhances the activity of defense enzymes in rice and modulates the expression of proteins related to the pyruvate metabolism pathway. This dual action contributes to rice's resistance against bacterial infestation. We anticipate that this study will serve as a foundation for the development of coumarin-based bactericides.


Assuntos
Antibacterianos , Cumarínicos , Testes de Sensibilidade Microbiana , Oryza , Xanthomonas , Cumarínicos/farmacologia , Cumarínicos/síntese química , Cumarínicos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Xanthomonas/efeitos dos fármacos , Oryza/microbiologia , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química , Compostos de Piridínio/síntese química , Xanthomonas campestris/efeitos dos fármacos , Desenho de Fármacos , Sais/farmacologia , Sais/química , Relação Estrutura-Atividade
8.
Ann Surg Oncol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879668

RESUMO

INTRODUCTION: Despite the increasing widespread adoption and experience in minimally invasive liver resections (MILR), open conversion occurs not uncommonly even with minor resections and as been reported to be associated with inferior outcomes. We aimed to identify risk factors for and outcomes of open conversion in patients undergoing minor hepatectomies. We also studied the impact of approach (laparoscopic or robotic) on outcomes. METHODS: This is a post-hoc analysis of 20,019 patients who underwent RLR and LLR across 50 international centers between 2004-2020. Risk factors for and perioperative outcomes of open conversion were analysed. Multivariate and propensity score-matched analysis were performed to control for confounding factors. RESULTS: Finally, 10,541 patients undergoing either laparoscopic (LLR; 89.1%) or robotic (RLR; 10.9%) minor liver resections (wedge resections, segmentectomies) were included. Multivariate analysis identified LLR, earlier period of MILR, malignant pathology, cirrhosis, portal hypertension, previous abdominal surgery, larger tumor size, and posterosuperior location as significant independent predictors of open conversion. The most common reason for conversion was technical issues (44.7%), followed by bleeding (27.2%), and oncological reasons (22.3%). After propensity score matching (PSM) of baseline characteristics, patients requiring open conversion had poorer outcomes compared with successful MILR cases as evidenced by longer operative times, more blood loss, higher requirement for perioperative transfusion, longer duration of hospitalization and higher morbidity, reoperation, and 90-day mortality rates. CONCLUSIONS: Multiple risk factors were associated with conversion of MILR even for minor hepatectomies, and open conversion was associated with significantly poorer perioperative outcomes.

9.
Viruses ; 16(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38793618

RESUMO

Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than Se301 cells and interfered with homologous SeMNNPV superinfection, were established. However, the effects of latent and superinfection with baculoviruses on cell cycle progression remain unknown. In this study, the cell cycle profiles of P8-Se301-C1 cells and SeMNPV or Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected P8-Se301-C1 cells were characterized by flow cytometry. The results showed that replication-related genes MCM4, PCNA, and BAF were down-regulated (p < 0.05) in P8-Se301-C1 cells, and the S phase of P8-Se301-C1 cells was longer than that of Se301 cells. P8-Se301-C1 cells infected with SeMNPV did not arrest in the G2/M phase or affect the expression of Cyclin B and cyclin-dependent kinase 1 (CDK1). Furthermore, when P8-Se301-C1 cells were infected with SeMNPV after synchronized treatment with hydroxyurea and nocodazole, light microscopy and qRT-PCR analysis showed that, compared with unsynchronized cells and S and G2/M phase cells, SeMNPV-infected P8-Se301-C1 cells in G1 phase induced G2/M phase arrest, and the amount of virus adsorption and intracellular viral DNA replication were significantly increased (p < 0.05). In addition, budded virus (BV) production and occlusion body (OB)-containing cells were both increased at 120 h post-infection (p < 0.05). The expression of Cyclin B and CDK1 was significantly down-regulated at 48 h post-infection (p < 0.05). Finally, the arrest of SeMNPV-infected G1 phase cells in the G2/M phase increased BV production (p < 0.05) and the number of OB-containing cells. In conclusion, G1 phase infection and G2/M arrest are favorable to SeMNPV proliferation in P8-Se301-C1 cells, thereby alleviating the homologous superinfection exclusion. The results contribute to a better understanding of the relationship between baculoviruses and insect cell cycle progression and regulation.


Assuntos
Pontos de Checagem da Fase G2 do Ciclo Celular , Nucleopoliedrovírus , Spodoptera , Superinfecção , Replicação Viral , Animais , Nucleopoliedrovírus/fisiologia , Linhagem Celular , Spodoptera/virologia , Superinfecção/virologia , Fase G1
10.
Sci Total Environ ; 931: 172866, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705291

RESUMO

Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 µM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.


Assuntos
Antibacterianos , Európio , Corantes Fluorescentes , Antibacterianos/análise , Corantes Fluorescentes/química , Európio/química , Tetraciclina/análise , Tetraciclinas/análise , Animais , Poluentes Químicos da Água/análise , Fluorescência , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos
11.
Mater Horiz ; 11(12): 2886-2897, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563639

RESUMO

Neuromorphic computing, which mimics biological neural networks, is widely regarded as the optimal solution for addressing the limitations of traditional von Neumann computing architecture. In this work, an adjustable multistage resistance switching ferroelectric Bi2FeCrO6 diode artificial synaptic device was fabricated using a sol-gel method with a simple process. The device exhibits nonlinearity in its electrical characteristics, demonstrating tunable multistage resistance switching behavior and a strong ferroelectric diode effect through the manipulation of ferroelectric polarization. One of its salient advantages resides in its capacity to dynamically regulate its polarization state in response to an external electric field, thereby facilitating the fine-tuning of synaptic connection strength while maintaining synaptic stability. The device is capable of accurately simulating the fundamental properties of biological synapses, including long/short-term plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity. Additionally, the device exhibits a distinctive photoelectric response and is capable of inducing synaptic plasticity by light signal activation. The utilization of a femtosecond laser for the scrutiny of carrier transport mechanisms imparts profound insights into the intricate dynamics governing the optical memory effect. Furthermore, utilizing a convolutional neural network (CNN) architecture, the recognition accuracy of the MNIST and fashion MNIST datasets was improved to 95.6% and 78%, respectively, through the implementation of improved random adaptive algorithms. These findings present a new opportunity for utilizing Bi2FeCrO6 materials in the development of artificial synapses for neuromorphic computation.

12.
J Agric Food Chem ; 72(18): 10195-10205, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662962

RESUMO

The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 µg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 µg/mL) and allicin (8.40, 28.22, and 88.04 µg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.


Assuntos
Antibacterianos , Benzofuranos , Dissulfetos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Xanthomonas , Benzofuranos/farmacologia , Benzofuranos/química , Benzofuranos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Xanthomonas/efeitos dos fármacos , Dissulfetos/química , Dissulfetos/farmacologia , Doenças das Plantas/microbiologia , Relação Quantitativa Estrutura-Atividade , Estrutura Molecular , Xanthomonas axonopodis/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Oryza/microbiologia , Oryza/química
13.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607116

RESUMO

Compared with purely electrical neuromorphic devices, those stimulated by optical signals have gained increasing attention due to their realistic sensory simulation. In this work, an optoelectronic neuromorphic device based on a photoelectric memristor with a Bi2FeCrO6/Al-doped ZnO (BFCO/AZO) heterostructure is fabricated that can respond to both electrical and optical signals and successfully simulate a variety of synaptic behaviors, such as STP, LTP, and PPF. In addition, the photomemory mechanism was identified by analyzing the energy band structures of AZO and BFCO. A convolutional neural network (CNN) architecture for pattern classification at the Mixed National Institute of Standards and Technology (MNIST) was used and improved the recognition accuracy of the MNIST and Fashion-MNIST datasets to 95.21% and 74.19%, respectively, by implementing an improved stochastic adaptive algorithm. These results provide a feasible approach for future implementation of optoelectronic synapses.

15.
Biomed Environ Sci ; 37(1): 3-18, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38326717

RESUMO

Objective: This study aimed to investigate the potential relationship between urinary metals copper (Cu), arsenic (As), strontium (Sr), barium (Ba), iron (Fe), lead (Pb) and manganese (Mn) and grip strength. Methods: We used linear regression models, quantile g-computation and Bayesian kernel machine regression (BKMR) to assess the relationship between metals and grip strength. Results: In the multimetal linear regression, Cu (ß = -2.119), As (ß = -1.318), Sr (ß = -2.480), Ba (ß = 0.781), Fe (ß = 1.130) and Mn (ß = -0.404) were significantly correlated with grip strength ( P < 0.05). The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was -1.007 (95% confidence interval: -1.362, -0.652; P < 0.001) when each quartile of the mixture of the seven metals was increased. Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength, with Cu, As and Sr being negatively associated with grip strength levels. In the total population, potential interactions were observed between As and Mn and between Cu and Mn ( P interactions of 0.003 and 0.018, respectively). Conclusion: In summary, this study suggests that combined exposure to metal mixtures is negatively associated with grip strength. Cu, Sr and As were negatively correlated with grip strength levels, and there were potential interactions between As and Mn and between Cu and Mn.


Assuntos
Arsênio , Metais , Estudos Transversais , Teorema de Bayes , China/epidemiologia , Metais/toxicidade , Estrôncio
16.
Phytomedicine ; 126: 155177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412667

RESUMO

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Assuntos
Ataxia Telangiectasia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/uso terapêutico , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
17.
Eur J Med Chem ; 265: 116118, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181651

RESUMO

In this work, we utilized the molecular hybridization strategy to design and synthesize novel 1,2,3-triazole benzothiazole derivatives K1-26. The antiproliferative activities against MGC-803, Kyse30 and HCT-116 cells were explored, and their structure-activity relationship were preliminarily conducted and summarized. Among them, compound K18, exhibited the strongest proliferation inhibitory activity, with esophageal cancer cells Kyse30 and EC-109 being the most sensitive to its effects (IC50 values were 0.042 and 0.038 µM, respectively). Compound K18 effectively inhibited tubulin polymerization (IC50 = 0.446 µM), thereby hindering tubulin polymerize into filamentous microtubules in Kyse30 and EC-109 cells. Additionally, compound K18 induced the degradation of oncogenic protein YAP via the UPS pathway. Based on these dual molecular-level effects, compound K18 could induce G2/M phase arrest and cell apoptosis in Kyse30 and EC-109 cells, as well as regulate the expression levels of cell cycle and apoptosis-related proteins. In summary, our findings highlight a novel 1,2,3-triazole benzothiazole derivative K18, which possesses significant potential for treating esophageal cancers.


Assuntos
Antineoplásicos , Neoplasias Esofágicas , Melfalan , gama-Globulinas , Humanos , Moduladores de Tubulina , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade , Benzotiazóis/farmacologia , Triazóis/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Polimerização , Estrutura Molecular
18.
Eur J Med Chem ; 267: 116166, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281455

RESUMO

Following nearly two decades of development, significant advancements have been achieved in PROTAC technology. As of the end of 2022, more than 20 drugs have entered clinical trials, with ARV-471 targeting estrogen receptor (ER) showing remarkable progress by entering phase III clinical studies. In 2022, significant progress has been made on multiple targets. The first reversible covalent degrader designed to target the KRASG12C mutant protein, based on cyclopropionamide, has been reported. Additionally, the activity HDCA1 degrader surpassed submicromolar levels during the same year. A novel FEM1B covalent ligand called EN106 was also discovered, expanding the range of available ligands. Furthermore, the first PROTAC drug targeting SOS1 was reported. Additionally, the first-in-class degraders that specifically target BRD4 isoforms (BRD4 L and BRD4 S) have recently been reported, providing a valuable tool for further investigating the biological functions of these isoforms. Lastly, a breakthrough was also achieved with the first degrader targeting both CDK9 and Cyclin T1. In this review, we aimed to update the PROTAC degraders as potential anticancer agents covering articles published in 2022. The design strategies, degradation effects, and anticancer activities were highlighted, which might provide an updated sight to develop novel PROTAC degraders with great potential as anticancer agents as well as favorable drug-like properties.


Assuntos
Antineoplásicos , Proteínas Nucleares , Fatores de Transcrição , Antineoplásicos/farmacologia , Antagonistas de Estrogênios , Isoformas de Proteínas , Proteólise
19.
Acta Pharmacol Sin ; 45(4): 686-703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38049578

RESUMO

Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most frequently mutated oncogene in human cancers with mutations predominantly occurring in codon 12. These mutations disrupt the normal function of KRAS by interfering with GTP hydrolysis and nucleotide exchange activity, making it prone to the GTP-bound active state, thus leading to sustained activation of downstream pathways. Despite decades of research, there has been no progress in the KRAS drug discovery until the groundbreaking discovery of covalently targeting the KRASG12C mutation in 2013, which led to revolutionary changes in KRAS-targeted therapy. So far, two small molecule inhibitors sotorasib and adagrasib targeting KRASG12C have received accelerated approval for the treatment of non-small cell lung cancer (NSCLC) harboring KRASG12C mutations. In recent years, rapid progress has been achieved in the KRAS-targeted therapy field, especially the exploration of KRASG12C covalent inhibitors in other KRASG12C-positive malignancies, novel KRAS inhibitors beyond KRASG12C mutation or pan-KRAS inhibitors, and approaches to indirectly targeting KRAS. In this review, we provide a comprehensive overview of the molecular and mutational characteristics of KRAS and summarize the development and current status of covalent inhibitors targeting the KRASG12C mutation. We also discuss emerging promising KRAS-targeted therapeutic strategies, with a focus on mutation-specific and direct pan-KRAS inhibitors and indirect KRAS inhibitors through targeting the RAS activation-associated proteins Src homology-2 domain-containing phosphatase 2 (SHP2) and son of sevenless homolog 1 (SOS1), and shed light on current challenges and opportunities for drug discovery in this field.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Descoberta de Drogas , Guanosina Trifosfato , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/química , Antineoplásicos/uso terapêutico
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123706, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043295

RESUMO

Mesotrione, which is a kind of herbicide to control broad-leaved weeds, has been increasingly used due to its excellent selectivity, rapid process and low toxicity. However, the excessive application of mesotrione have led to widespread contamination. Herein, a turn-on competitive coordination-based fluorescent probe, 2-hydroxy-1-(9-purin)-methylidenehydrazinenaphthalene (HPM), has been successfully synthesized. HPM could effectively detect Al3+ in CH3OH/HEPES (1/9, v/v) with low limit of detection (LOD) being 0.2 µM via coordination. HPM also exhibited excellent imaging capabilities for Al3+ in living cells with low cytotoxicity. On the basis of the competitive coordination of HPM with Al3+, the [HPM-Al3+] complex could also serve as a potential fluorescence sensor for detecting mesotrione with the LOD of 0.2 µM. Furthermore, [HPM-Al3+] complex was applied for the detection of mesotrione in real samples and test paper. Finally, the mechanism of [HPM-Al3+] for sensing mesotrione was investigated deeply as well. This work designed a new convenient method for on-site detection of mesotrione without the large-scale equipment or complicated pre-treatment.


Assuntos
Alumínio , Herbicidas , Cicloexanonas , Plantas Daninhas , Corantes Fluorescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...