Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 4121, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807782

RESUMO

Vasoactive intestinal polypeptide receptor (VIP1R) is a widely expressed class B G protein-coupled receptor and a drug target for the treatment of neuronal, metabolic, and inflammatory diseases. However, our understanding of its mechanism of action and the potential of drug discovery targeting this receptor is limited by the lack of structural information of VIP1R. Here we report a cryo-electron microscopy structure of human VIP1R bound to PACAP27 and Gs heterotrimer, whose complex assembly is stabilized by a NanoBiT tethering strategy. Comparison with other class B GPCR structures reveals that PACAP27 engages VIP1R with its N-terminus inserting into the ligand binding pocket at the transmembrane bundle of the receptor, which subsequently couples to the G protein in a receptor-specific manner. This structure has provided insights into the molecular basis of PACAP27 binding and VIP receptor activation. The methodology of the NanoBiT tethering may help to provide structural information of unstable complexes.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Difusão Dinâmica da Luz , Humanos , Microscopia Eletrônica , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
2.
Acta Pharmacol Sin ; 40(10): 1364-1372, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31253939

RESUMO

Arthrobacter globiformis Uricase (AgUricase) is a homotetrameric uricase with the potential for therapeutic use in treating hyperuricemia-related diseases. To achieve sufficient therapeutic effects, it is essential for this enzyme to have high thermostability and long half-life in physiological condition. To improve the thermostability of this enzyme, we introduced a series of cysteine pair mutations into the AgUricase subunits based on its structural model and studied the thermostability of the mutant enzymes with introduced disulfide bridges. Two intersubunit cysteine pair mutations, K12C-E286C and S296C-S296C, were found to markedly increase the melting temperatures of the corresponding mutant enzymes compared with WT AgUricase. The crystal structure of the K12C-E286C mutant at 1.99 Å resolution confirmed the formation of a distinct disulfide bond between the two subunits in the dimer. Structural analysis and biochemical data revealed that the C-terminal loop of AgUricase was flexible, and its interaction with neighboring subunits was required for the stability of the enzyme. We introduced an additional intersubunit K244C-C302 disulfide bond based on the crystal structure of the K12C-E286C mutant and confirmed that this additional disulfide bond further stabilized the flexible C-terminal loop and improved the thermostability of the enzyme. Disulfide cross-linking also protected AgUricase from protease digestion. Our studies suggest that the introduction of disulfide bonds into proteins is a potential strategy for enhancing the thermostability of multimeric proteins for medical applications.


Assuntos
Gota/metabolismo , Hiperuricemia/metabolismo , Temperatura , Urato Oxidase/metabolismo , Arthrobacter/enzimologia , Cristalografia por Raios X , Estabilidade Enzimática , Gota/terapia , Hiperuricemia/terapia , Modelos Moleculares , Conformação Proteica , Urato Oxidase/química , Urato Oxidase/isolamento & purificação
4.
Eur J Med Chem ; 154: 44-59, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29775936

RESUMO

Fatty acid binding protein 4 (FABP4) plays a critical role in metabolism and inflammatory processes and therefore is a potential therapeutic target for immunometabolic diseases such as diabetes and atherosclerosis. Herein, we reported the identification of naphthalene-1-sulfonamide derivatives as novel, potent and selective FABP4 inhibitors by applying a structure-based design strategy. The binding affinities of compounds 16dk, 16do and 16du to FABP4, at the molecular level, are equivalent to or even better than that of BMS309403. The X-ray crystallography complemented by the isothermal titration calorimetry studies revealed the binding mode of this series of inhibitors and the pivotal network of ordered water molecules in the binding pocket of FABP4. Moreover, compounds 16dk and 16do showed good metabolic stabilities in liver microsomes. Further extensive in vivo study demonstrated that 16dk and 16do exhibited a dramatic improvement in glucose and lipid metabolism, by decreasing fasting blood glucose and serum lipid levels, enhancing insulin sensitivity, and ameliorating hepatic steatosis in obese diabetic (db/db) mice.


Assuntos
Descoberta de Drogas , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Naftalenos/farmacologia , Sulfonamidas/farmacologia , Células 3T3-L1 , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Proteínas de Ligação a Ácido Graxo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...