Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1381712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694920

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome characterized by abnormalities in hepatic fat deposition, the incidence of which has been increasing year by year in recent years. It has become the largest chronic liver disease globally and one of the important causes of cirrhosis and even primary liver cancer formation. The pathogenesis of NAFLD has not yet been fully clarified. Modern medicine lacks targeted clinical treatment protocols for NAFLD, and most drugs lack efficacy and have high side effects. In contrast, Traditional Chinese Medicine (TCM) has significant advantages in the treatment and prevention of NAFLD, which have been widely recognized by scholars around the world. In recent years, through the establishment of a "medicine-disease-target-pathway" network relationship, network pharmacology can explore the molecular basis of the role of medicines in disease prevention and treatment from various perspectives, predicting the pharmacological mechanism of the corresponding medicines. This approach is compatible with the holistic view and treatment based on pattern differentiation of TCM and has been widely used in TCM research. In this paper, by searching relevant databases such as PubMed, Web of Science, and Embase, we reviewed and analyzed the relevant signaling pathways and specific mechanisms of action of single Chinese medicine, Chinese medicine combinations, and Chinese patent medicine for the treatment of NAFLD in recent years. These related studies fully demonstrated the therapeutic characteristics of TCM with multi-components, multi-targets, and multi-pathways, which provided strong support for the exact efficacy of TCM exerted in the clinic. In conclusion, we believe that network pharmacology is more in line with the TCM mindset of treating diseases, but with some limitations. In the future, we should eliminate the potential risks of false positives and false negatives, clarify the interconnectivity between components, targets, and diseases, and conduct deeper clinical or experimental studies.

2.
Invest Ophthalmol Vis Sci ; 65(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165704

RESUMO

Purpose: To investigate the impact of transmembrane protein CMTM6 on the pathogenesis of dry eye disease (DED) and elucidate its potential mechanisms. Methods: CMTM6 expression was confirmed by database analysis, real-time polymerase chain reaction (RT-PCR), western blot, and immunohistochemistry. Tear secretion was measured using the phenol red thread test. Immune cell infiltration was assessed through flow cytometry. Barrier function was evaluated by fluorescein sodium staining, immunofluorescence staining of zonula occludens 1 (ZO-1), and electric cell-substrate impedance sensing (ECIS) assessment. For silencing CMTM6 expression, siRNA and shRNA were employed, along with lentiviral vector-mediated overexpression of CMTM6. Proinflammatory cytokine levels were analyzed by RT-PCR and cytometric bead array (CBA) analysis. Results: CMTM6 showed high expression in healthy human and mouse corneal and conjunctival epithelium but was notably reduced in DED. Notably, this downregulation was correlated with disease severity. Cmtm6-/- dry eye (DE) mice displayed reduced tear secretion, severe corneal epithelial defects, decreased conjunctival goblet cell density, and upregulated inflammatory response. Additionally, Cmtm6-/- DE mice and CMTM6 knockdown human corneal epithelial cell-transformed (HCE-T) cells showed more severe barrier disruption and reduced expression of ZO-1. Knockdown of CMTM6 in HCE-T cells increased inflammatory responses induced by hyperosmotic stress, which was significantly mitigated by CMTM6 overexpression. Moreover, the level of phospho-p65 in hyperosmolarity-stimulated HCE-T cells increased after silencing CMTM6. Nuclear factor kappa B (NF-κB) p65 inhibition (JSH-23) reversed the excessive inflammatory responses caused by hyperosmolarity in CMTM6 knockdown HCE-T cells. Conclusions: The reduction in CMTM6 expression on the ocular surface contributes to the pathogenesis of DED. The CMTM6-NF-κB p65 signaling pathway may serve as a promising therapeutic target for DED.


Assuntos
Síndromes do Olho Seco , Epitélio Corneano , Proteínas com Domínio MARVEL , Proteínas da Mielina , Animais , Humanos , Camundongos , Córnea/metabolismo , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/metabolismo , NF-kappa B/metabolismo , Proteínas com Domínio MARVEL/genética , Proteínas com Domínio MARVEL/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo
3.
J Mol Cell Biol ; 16(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38115633

RESUMO

Homeostasis of the skin barrier is essential for maintaining normal skin function. Gasdermin A (GSDMA) is highly expressed in the skin and associated with many skin diseases, such as melanoma and psoriasis. In mice, GSDMA is encoded by three gene homologues, namely Gsdma1, Gsdma2, and Gsdma3. Although Gsdma3 gain-of-function mutations cause hair loss and skin inflammation, Gsdma3-deficient mice do not show any visible phenotypes in skin and hair structures. To explore the physiological function of GSDMA, we generated conventional Gsdma1/2/3 knockout (KO) mice. These mice showed significantly alleviated epidermal hyperplasia and inflammation induced by phorbol 12-myristate 13-acetate (PMA). Furthermore, the alleviation of epidermal hyperplasia depended on the expression of Gsdma1/2/3 specifically in keratinocytes. Mechanistically, Gsdma1/2/3 depletion downregulated epidermal growth factor receptor (EGFR) ligands, leading to the decreased EGFR-Stat3/Akt signalling. These results demonstrate that depletion of Gsdma1/2/3 alleviates PMA-induced epidermal hyperplasia partially by inhibiting the EGFR-Stat3/Akt pathway.


Assuntos
Epiderme , Receptores ErbB , Hiperplasia , Queratinócitos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Acetato de Tetradecanoilforbol , Animais , Fator de Transcrição STAT3/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Epiderme/patologia , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Gasderminas
4.
Cancer Lett ; 583: 216585, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38101607

RESUMO

CMTM6, a regulator of PD-L1 stability, has been implicated in the development of various cancers. However, the expression and role of CMTM6 in hepatocellular carcinoma (HCC) remains controversial. Our study revealed a negative correlation between CMTM6 expression and HCC prognosis through bioinformatics analysis and immunofluorescence staining. CMTM6 expression was also positively associated with alpha-fetoprotein (AFP) levels, supporting its potential as a prognostic marker for HCC. Using Cmtm6 knockout mice, we found that Cmtm6 deficiency inhibited HCC formation and cell proliferation in primary liver cancer models induced by DEN and DEN/CCl4. In HCC cell lines, CMTM6 promoted cell proliferation and interacted with ß-catenin, stabilizing it by preventing ubiquitination. In conclusion, our study suggested that CMTM6 upregulation promotes HCC cell proliferation through the ß-catenin pathway, making it a potential therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Prognóstico
5.
Microbiome ; 11(1): 137, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344888

RESUMO

BACKGROUND: Intestinal inflammation has become a threatening concern in chicken production worldwide and is closely associated with Th17/Treg cell imbalance. Several studies described that gut microbiota is significantly implicated in chicken growth by modulating intestinal immune homeostasis and immune cell differentiation. Whether reshaping gut microbiota by fecal microbiota transplantation (FMT) could improve chicken growth by balancing Th17/Treg cells is an interesting question. RESULTS: Here, the chickens with significantly different body weight from three different breeds (Turpan cockfighting × White Leghorn chickens, white feather chickens, and yellow feather chickens) were used to compare Th17 and Treg cells. qPCR and IHC staining results indicated that Th17 cell-associated transcriptional factors Stat3 and rorγt and cytokines IL-6, IL-17A, and IL-21 were significantly (P < 0.05) higher in the jejunum of low body weight chickens, while Treg cell-associated transcriptional factor foxp3 and cytokines TGF-ß and IL-10 were significantly (P < 0.05) lower in the jejunum of low body weight chickens, indicating imbalanced Th17/Treg cells were closely related to chicken growth performance. Transferring fecal microbiota from the healthy donor with better growth performance and abundant Lactobacillus in feces to 1-day-old chicks markedly increased growth performance (P < 0.001), significantly decreased Th17 cell-associated transcriptional factors and cytokines, and increased Treg cell-associated transcriptional factors and cytokines in the jejunum (P < 0.05). Furthermore, FMT increased the abundance of Lactobacillus (FMT vs Con; 84.98% vs 66.94%). Besides, the metabolites of tryptophan including serotonin, indole, and 5-methoxyindoleacetate were increased as well, which activated their receptor aryl-hydrocarbon-receptor (AhR) and expressed more CYP1A2 and IL-22 to maintain Th17/Treg cell balance and immune homeostasis. CONCLUSION: These findings suggested that imbalanced Th17/Treg cells decreased chicken growth performance, while FMT-reshaped gut microbiota, i.e., higher Lactobacilli, increased chicken growth performance by balancing Th17/Treg cells. Video Abstract.


Assuntos
Galinhas , Linfócitos T Reguladores , Animais , Galinhas/metabolismo , Transplante de Microbiota Fecal , Células Th17 , Jejuno/metabolismo , Citocinas , Peso Corporal
6.
Environ Dev Sustain ; : 1-38, 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-37363028

RESUMO

Global environmental concerns and resource scarcity are driving the growth in sales of electric vehicles (EVs). Reusing and recycling retired batteries from EVs has significant economic value and reduces the environmental burden. Rising raw material prices have intensified competition among recyclers; in particular, recyclers without corporate social responsibility (CSR) have been added. These observations lead to a game-theoretical model consisting of three players: a battery manufacturer, a recycler with CSR and a recycler without CSR (non-CSR). The non-CSR recycler enjoys a cost advantage over the CSR recycler, but may not be considered by the consumers with high environmental awareness (CEA). We explore the incentive strategies for CSR recyclers outperform, and how the equilibrium is affected by the recyclers' Stackelberg game. Results show that (1) the deposit- refund is the most profitable strategy for all members and the whole supply chain if raw material price rises high enough; otherwise, a contract strategy should be adopted. (2) Improving CEA and echelon utilization ratio is more conducive to the implementation of revenue-sharing contract. In addition, increasing CEA contributed to CSR recycler collects more retired batteries instead of non-CSR recycler. (3) Stackelberg game between recyclers may hurt supply chain. However, CSR recycler may benefit from the non-CSR recycler-led Stackelberg game. Our work provides the basis of incentive strategies for different participants in the closed-loop supply chain of retired batteries, in particular, to encourage retired batteries flow to CSR recyclers.

7.
NPJ Biofilms Microbiomes ; 9(1): 28, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253749

RESUMO

Cecal microbiota plays an essential role in chicken health. However, its contribution to fat metabolism, particularly in abdominal fat deposition, which is a severe problem in the poultry industry, is still unclear. Here, chickens at 1, 4, and 12 months of age with significantly (p < 0.05) higher and lower abdominal fat deposition were selected to elucidate fat metabolism. A significantly (p < 0.05) higher mRNA expression of fat anabolism genes (ACSL1, FADS1, CYP2C45, ACC, and FAS), a significantly (p < 0.05) lower mRNA expression of fat catabolism genes (CPT-1 and PPARα) and fat transport gene APOAI in liver/abdominal fat of high abdominal fat deposition chickens indicated that an unbalanced fat metabolism leads to excessive abdominal fat deposition. Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis were found significantly (p < 0.05) higher in high abdominal fat deposition chickens, while Sphaerochaeta was higher in low abdominal fat deposition chickens. Further, Spearman correlation analysis indicated that the relative abundance of cecal Parabacteroides, Parasutterella, Oscillibacter, and Anaerofustis was positively correlated with abdominal fat deposition, yet cecal Sphaerochaeta was negatively correlated with fat deposition. Interestingly, transferring fecal microbiota from adult chickens with low abdominal fat deposition into one-day-old chicks significantly (p < 0.05) decreased Parabacteroides and fat anabolism genes, while markedly increased Sphaerochaeta (p < 0.05) and fat catabolism genes (p < 0.05). Our findings might help to assess the potential mechanism of cecal microbiota regulating fat deposition in chicken production.


Assuntos
Galinhas , Microbiota , Animais , Metabolismo dos Lipídeos , RNA Mensageiro/metabolismo , Gordura Abdominal/metabolismo
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(9): 1191-1199, 2022 Sep 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36411702

RESUMO

OBJECTIVES: Methotrexate (MTX) is the most common therapeutic agent that may have the risk of drug-induced liver injury. Its pathogenic mechanism is related to oxidative stress caused by mitochondrial dysfunction. Superoxide dismutase (SOD), including manganese-containing SOD (Mn-SOD), can exert its effect of anti-oxidative stress by scavenging superoxide free radicals. Accordingly, this study is performed to explore the underlying molecular mechanism via observing whether Mn-SOD could affect the damage of MTX to hepatocytes. METHODS: Human hepatocyte cell line L-02 was cultured in vitro and divided into 4 groups, including a blank group with the addition of the same volume of serum-free medium, a MTX group (40 µg/well MTX drug-treatment), a MTX+NC group (40 µg/well MTX drug-treatment+blank plasmid), and a MTX+SOD group (40 µg/well MTX drug-treatment+Mn-SOD plasmid). The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and microRNA-122 (miR-122) in the supernatant of cell culture were respectively detected by automatic biochemical analytical instrument and real-time RT-PCR to evaluate the degree of hepatocyte damage in each group. MitoSOX fluorescent probe was used to label intracellular superoxide in each group, and cell apoptosis was detected by flow cytometry. Meanwhile, the contents of glycogen synthase kinase-3 beta (GSK-3ß), hemeoxygenase-1 (HO-1), mitochondrial fission-mediated protein of dynamin-related protein 1 (Drp1), and Mn-SOD were detected by Western blotting. RESULTS: Compared with the blank group, the levels of ALT, AST, and miR-122 in the supernatant of hepatocyte culture of the MTX group and MTX+NC group were significantly elevated (all P <0.05), and that in the MTX+SOD group were significantly decreased ( P <0.05) and equivalent to that in the blank group. MitoSOX staining revealed that the MTX group and MTX+NC had the most abundant superoxide; and the amount was significantly reduced in the MTX+SOD group, without a significant difference when compared with the blank group. Furthermore, the results of flow cytometry indicated that compared with the blank group, the MTX group and MTX+NC group showed significantly increased cell apoptosis ( P <0.05); while there was obviously reduced cell apoptosis in the MTX+SOD group than that in the MTX group and MTX+NC group ( P <0.05). According to the results of Western blotting, the blank group and MTX+SOD group had higher expressions of Mn-SOD, p-GSK-3ß, and HO-1; while the MTX group and MTX+NC group exhibited remarkably lower levels of Mn-SOD, p-GSK-3ß, and HO-1 than those in the blank group ( P <0.05). Besides, a completely opposite trend was found in the expression of Drp1, which was highly expressed in the MTX group and MTX+NC group, but lowly expressed in the blank group and the MTX+SOD group. CONCLUSIONS: MTX may induce hepatocyte damage, and one of the mechanisms may be due to the decrease of intracellular Mn-SOD level, which can cause the accumulation of superoxide, affect the levels of HO-1 and Drp1 through GSK-3ß leading to mitochondrial damage and cell apoptosis. High expression of Mn-SOD intracellularly through exogenous introduction can scavenge drug-produced superoxide, affect HO-1 and Drp1 levels through GSK-3ß, activate mitochondria, protect cells against damage from oxidative stress, and inhibit hepatocyte apoptosis eventually. So exogenous introduction of SOD may be a potential therapeutic approach to block or reverse MTX-related hepatocyte injury.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Dinaminas/metabolismo , Dinaminas/farmacologia , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Metotrexato/efeitos adversos , MicroRNAs/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Superóxidos/farmacologia
9.
J. physiol. biochem ; 78(4): 885-895, nov. 2022.
Artigo em Inglês | IBECS | ID: ibc-216179

RESUMO

Activated hepatic stellate cells (HSCs) are considered the major drivers in the process of hepatic fibrosis. This study intends to explore the mechanism underlying microRNA (miR)-34b-5p effects over liver fibrosis through the enhancer of zeste 2 (EZH2)/milk fat globule-EGF factor 8 (MFGE8) axis in HSCs. A liver fibrosis model was generated by carbon tetrachloride (CCl4) in C57BL/6 J mice and subjected to histological examinations and detection of HSC activation and miR-34b-5p/EZH2/MFGE8 expression. Primary HSCs were treated with transforming growth factor (TGF)-β and tested for proliferation, activation, and expression of fibrosis-related factors. A dual luciferase reporter assay was performed for confirming the targeted relationship between miR-34b-5p and EZH2. Chromatin immunoprecipitation was used to measure EZH2 enrichment in the MFGE8 promoter region. We found that miR-34b-5p was lowly expressed in the CCl4-induced mouse model. Overexpression of miR-34b-5p suppressed both TGF-β-induced HSC proliferation and the expression of fibrosis-related factors and HSC activation markers. A dual luciferase assay showed a binding relationship between miR-34b-5p and EZH2. Overexpression of miR-34b-5p reduced TGF-β-induced HSC activation by inhibiting EZH2 to promote MFGE8 expression. Overexpression of miR-34b-5p inhibited liver fibrosis in vivo through the EZH2/MFGE8 axis. Conclusively, overexpressing miR-34b-5p reduced TGF-β-induced HSC activation by inhibiting EZH2 and thereby promoting MFGE8 expression, and inhibited liver fibrosis in vivo through the EZH2/MFGE8 axis. (AU)


Assuntos
Animais , Camundongos , Antígenos de Superfície/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Cirrose Hepática , MicroRNAs , Fator de Crescimento Transformador beta1 , Camundongos Endogâmicos C57BL
10.
J Physiol Biochem ; 78(4): 885-895, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36138295

RESUMO

Activated hepatic stellate cells (HSCs) are considered the major drivers in the process of hepatic fibrosis. This study intends to explore the mechanism underlying microRNA (miR)-34b-5p effects over liver fibrosis through the enhancer of zeste 2 (EZH2)/milk fat globule-EGF factor 8 (MFGE8) axis in HSCs. A liver fibrosis model was generated by carbon tetrachloride (CCl4) in C57BL/6 J mice and subjected to histological examinations and detection of HSC activation and miR-34b-5p/EZH2/MFGE8 expression. Primary HSCs were treated with transforming growth factor (TGF)-ß and tested for proliferation, activation, and expression of fibrosis-related factors. A dual luciferase reporter assay was performed for confirming the targeted relationship between miR-34b-5p and EZH2. Chromatin immunoprecipitation was used to measure EZH2 enrichment in the MFGE8 promoter region. We found that miR-34b-5p was lowly expressed in the CCl4-induced mouse model. Overexpression of miR-34b-5p suppressed both TGF-ß-induced HSC proliferation and the expression of fibrosis-related factors and HSC activation markers. A dual luciferase assay showed a binding relationship between miR-34b-5p and EZH2. Overexpression of miR-34b-5p reduced TGF-ß-induced HSC activation by inhibiting EZH2 to promote MFGE8 expression. Overexpression of miR-34b-5p inhibited liver fibrosis in vivo through the EZH2/MFGE8 axis. Conclusively, overexpressing miR-34b-5p reduced TGF-ß-induced HSC activation by inhibiting EZH2 and thereby promoting MFGE8 expression, and inhibited liver fibrosis in vivo through the EZH2/MFGE8 axis.


Assuntos
Antígenos de Superfície , Proteína Potenciadora do Homólogo 2 de Zeste , Cirrose Hepática , MicroRNAs , Animais , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Antígenos de Superfície/metabolismo
11.
Nutrients ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145063

RESUMO

Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.


Assuntos
Mastite Bovina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bovinos , Cefalosporinas/uso terapêutico , Cloranfenicol/uso terapêutico , Ácidos Graxos Voláteis/uso terapêutico , Feminino , Humanos , Lincomicina/uso terapêutico , Macrolídeos , Mastite Bovina/tratamento farmacológico , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia , Meticilina/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Tetraciclinas
12.
Cancers (Basel) ; 13(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34680324

RESUMO

Anti-PD-1/L1 immunotherapy has been intensively used in heavily treated population with advanced gastric adenocarcinoma. However, the immunotherapeutic efficacy is low even in PD-L1 positive patients. We aimed to establish a new strategy based on the co-expression of CMTM6/4 and PD-L1 for patient stratification before immunotherapy. By analyzing the data obtained from TCGA and single-cell RNA sequencing at the mRNA level, and 6-color multiplex immunofluorescence staining of tumor tissues in tissue array and 48-case pre-immunotherapy patients at the protein level, we found that CMTM6/4 and PD-L1 co-expressed in both epithelial and mesenchymal regions of gastric adenocarcinoma. The tumor tissues had higher levels of CMTM6/4 expression than their adjacent ones. A positive correlation was found between the expression of CMTM6/4 and the expression of PD-L1 in tumor epithelium. Epithelial co-expression of CMTM6/4 and PD-L1 in gastric tumor region was associated with shorter overall survival but better short-term response to anti-PD-1/L1 immunotherapy. Thus, we developed a predictive model and three pathological patterns based on the membrane co-expression of CMTM6/4 and PD-L1 in tumor epithelial cells for pre-immunotherapy patient screening in gastric adenocarcinoma.

13.
Eur J Immunol ; 51(5): 1234-1245, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454984

RESUMO

Pyroptosis is a type of acute cell death that mainly occurs in immune cells. It is characterized with robust release of inflammatory cytokines and has emerged to play a critical role in the pathogenesis of sepsis-associated immune disorders. In this study, we screened for pyroptotic inhibitors with the ultimate goal to benefit sepsis treatments. Accidentally, we identified that nitrosonisoldipine (NTS), a photodegradation product of calcium channel inhibitor nisoldipine, inhibits noncanonical pyroptosis. Using murine immortalized BM-derived macrophage and human THP-1 cell line, we further discovered that NTS not only inhibits noncanonical pyroptosis mediated by caspase-11 or caspase-4 but also canonical pyroptosis mediated by caspase-1. Mechanistically, NTS directly inhibits the enzyme activities of these inflammatory caspases, and these inhibitory effects persist despite extensive washout of the drug. By contrast, apoptosis mediated by caspase-3/-7 was not affected by NTS. Mice pretreated with NTS intraperitoneally displayed improved survival rate and extended survival time in LPS- and polymicrobe-induced septic models, respectively. In conclusion, NTS is a selective inhibitor of inflammatory caspases that blocks both the noncanonical and canonical pyroptotic pathways. It is safe for intraperitoneal administration and might be used as a prototype to develop drugs for sepsis treatments.


Assuntos
Inibidores de Caspase/farmacologia , Piroptose/efeitos dos fármacos , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Inibidores de Caspase/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Prognóstico , Choque Séptico/etiologia , Choque Séptico/mortalidade , Resultado do Tratamento
14.
Opt Lett ; 45(3): 722-725, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004294

RESUMO

We report on the first, to the best of our knowledge, direct generation of pulsed vortex beams at 2 µm from a ${ Q}$Q-switched Tm:LuYAG laser. High-energy Laguerre-Gaussian (${{\rm LG}_{0,l}}$LG0,l) pulsed laser beams with well-defined handedness are selectively excited through spatially matched pump gain distribution and asymmetric cavity loss without using any intracavity handedness-selective optical elements. Pulse energies of 1.48 mJ for the ${{\rm LG}_{0, + 1}}$LG0,+1 mode and 1.51 mJ for the ${{\rm LG}_{0, - 1}}$LG0,-1 mode, respectively, are achieved at a repetition rate of 500 Hz. The pulsed laser beams with helical wavefronts are potentially useful for studying orbital angular momentum transformation dynamics, generation of mid-IR vortex beams, and nanostructuring of organic materials.

15.
Cell Death Differ ; 27(2): 466-481, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209359

RESUMO

Hypomagnesemia is a significant risk factor for critically ill patients to develop sepsis, a life-threatening disease with a mortality rate over 25%. Our clinic data analysis showed that hypomagnesemia is associated with a decreased monocyte count in septic patients. At the cellular level, we found that Mg2+ inhibits pyroptosis. Specifically, Mg2+ limits the oligomerization and membrane localization of gasdermin D N-terminal (GSDMD-NT) upon the activation of either the canonical or noncanonical pyroptotic pathway. Mechanistically, we demonstrated that Ca2+ influx is a prerequisite for the function of GSDMD-NT. Mg2+ blocks Ca2+ influx by inhibiting the ATP-gated Ca2+ channel P2X7, thereby impeding the function of GSDMD-NT and inhibiting lipopolysaccharide (LPS)-induced noncanonical pyroptosis. Furthermore, Mg2+ administration protects mice from LPS-induced lethal septic shock. Together, our data reveal the underlying mechanism of how Mg2+ inhibits pyroptosis and suggest potential clinic applications of magnesium supplementation for sepsis prevention and treatment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Magnésio/farmacologia , Proteínas de Ligação a Fosfato/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Animais , Células Cultivadas , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Magnésio/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Fosfato/metabolismo , Sepse/metabolismo , Sepse/patologia
16.
Eur J Immunol ; 50(3): 464-467, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31756255

RESUMO

Pyroptosis is a type of programmed lytic cell death that could be activated by either the canonical or noncanonical inflammasome pathway. In this study, we aimed to examine the effect of hypertonic solution on noncanonical pyroptosis in macrophage. We found that although hypertonic solution had a general inhibitory effect on noncanonical pyroptosis, the underlying mechanism varied by the solute causing hypertonicity. Specifically, hypertonic NaCl or KCl solution inhibited the cleavage of gasdermin D, the pore-forming protein in pyroptosis, whereas hypertonic saccharide solution did not affect the cleavage or membrane binding of gasdermin D. In this case, nevertheless, pyroptosis was still inhibited as evidenced by the preserved mitochondria activity and cell membrane permeability.


Assuntos
Soluções Hipertônicas/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Animais , Camundongos
17.
Oncoimmunology ; 8(5): e1577126, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069137

RESUMO

CYTL1 is a novel cytokine that was first identified in CD34+ hematopoietic cells. We previously prepared recombinant CYTL1 and verified that it chemoattracted human monocytes via the CCR2/ERK pathway. It has been reported that CYTL1 plays contradictory roles in neuroblastoma and lung cancer. We found that the expression level of CYTL1 was notably decreased and it was hypermethylated in various tumors, including breast and lung cancer, by bioinformatics analyses. After validating the expression of CYTL1 in lung cancer, we identified that CYTL1 exerted no obvious effect on tumor cell proliferation but inhibited their migration and invasion, and these effects were accompanied by decreasing STAT3 phosphorylation, using recombinant CYTL1 and CYTL1-overexpressing tumor cell lines. Furthermore, we constructed experimental and spontaneous metastasis models of breast cancer in BALB/c mice and found that CYTL1 significantly inhibited tumor metastasis in vivo. In summary, CYTL1 is a cytokine with tumor-suppressing characteristics that inhibits tumor metastasis and STAT3 phosphorylation in multiple types of tumors.

18.
Eur J Pharmacol ; 853: 325-335, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30978320

RESUMO

Cerebral ischemia impairs physiological form of synaptic plasticity such as long-term potentiation (LTP). Clinical symptoms of cognitive dysfunction resulting from cerebral ischemia are associated with neuron loss and synaptic function impairment in hippocampus. It has been widely reported that cordycepin displays neuroprotective effect on ameliorating cognitive dysfunction induced by cerebral ischemia. Therefore, it is necessary to study whether cordycepin recovers cognitive function after brain ischemia through improving LTP induction. However, there has been very little discussion about the effects of cordycepin on LTP of cerebral ischemia so far. In the present study, we investigated the effects of cordycepin on LTP impairment and neuron loss induced by cerebral ischemia and excitotoxicity, using electrophysiological recording and Nissl staining techniques. The models were obtained by bilateral common carotid artery occlusion (BCCAO) and intrahippocampal NMDA microinjection. We also explored whether adenosine A1 receptors involve in the neuroprotection of cordycepin by using western blot. We found that cordycepin remarkably alleviated LTP impairment and protected pyramidal cell of hippocampal CA1 region against cerebral ischemia and excitotoxicity. Meanwhile, cordycepin prevented the reduction on adenosine A1 receptor level caused by ischemia but did not alter the adenosine A2A receptor level in hippocampal CA1 area. The improvement of LTP in the excitotoxic rats after cordycepin treatment could be blocked by DPCPX, a selective antagonist of adenosine A1 receptor. In summary, our findings provided new insights into the mechanisms of cordycepin neuroprotection in excitotoxic diseases, which is through regulating adenosine A1 receptor to improve LTP formation and neuronal survival.


Assuntos
Desoxiadenosinas/farmacologia , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/toxicidade , Receptor A1 de Adenosina/metabolismo , Animais , Contagem de Células , Regulação da Expressão Gênica/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
19.
BMC Cancer ; 19(1): 209, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30849960

RESUMO

BACKGROUND: MicroRNA-148b (miR-148b) has been detected in various types of tumors, and is generally viewed as a tumor suppressor. Our previous study found the decreased expression of miR-148b in human non small cell lung cancer (NSCLC) specimens and cell lines. However, the underlying mechanisms of miR-148b in regulating tumor progression remain unclear. METHODS: Firstly animal experiments were performed to verify whether miR-148b could inhibit the tumor growth. Then, the underlying mechanisms were studied by transfecting recombinant plasmids containing a miR-148b mimic or a negative control (NC) mimic (shRNA control) into NSCLC cell lines PC14/B and A549 cells. Tumor cells transfected with unpackaged lentiviral vectors was used as blank control. Cell proliferation capabilities were measured by using CCK-8 kit and colony formation assay. Cell cycle arrest was compared to clarify the mechanism underlying the tumor cell proliferation. Annexin V-FITC Apoptosis Detection kit was applied to investigate the effect of miR-148b on cell apoptosis. Furthermore, western blot analysis were performed to study the targeting pathway. RESULTS: We found that over-expression of miR148b could significantly inhibit tumor growth, while knocking down miR148b could obviously promote tumor growth. Further experiment showed that miR-148b inhibited tumor cell proliferation. Besides, over-expression of miR148b decreased the G2/M phase population of the cell cycle by preventing NSCLC cells from entering the mitotic phase and enhanced tumor cell apoptosis. Further western blot analysis indicated that miR148b could inhibit mitogen-activated protein kinase/Jun N-terminal kinase (MAPK/JNK) signaling by decreasing the expression of phosphorylated (p) JNK. CONCLUSIONS: These results demonstrate that miR-148b could inhibit the tumor growth and act as tumor suppressor by inhibiting the proliferation and inducing apoptosis of NSCLC cells by blocking the MAPK/JNK pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Fosforilação , Interferência de RNA
20.
Am J Pathol ; 189(5): 1041-1052, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30790561

RESUMO

Missense mutations in the gasdermin-A3 (Gsdma3) gene are associated with skin inflammation and hair loss in mice. However, the physiological function of Gsdma3 remains unclear. Herein, we reported that mice carrying the Gsdma3 Y344H mutation that encodes a presumptive activated form of Gsdma3 show increased heat production along with lower body fat percentages. Detailed analysis indicated that this metabolic phenotype is mediated by serum IL-6-induced up-regulation of thermogenesis in brown adipose tissue. The mutant form of Gsdma3 promotes the expression of IL-6 in the epidermis in a c-Jun N-terminal kinase (JNK) signaling-dependent manner. The higher whole-body heat production in alopecia and excoriation mice could be suppressed by an IL-6 receptor/GP130 inhibitor. Our results uncovered Gsdma3/IL-6-dependent cross talk between the skin and brown adipose tissue.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Alopecia/fisiopatologia , Interleucina-6/metabolismo , Proteínas/metabolismo , Fator de Transcrição STAT3/metabolismo , Dermatopatias/fisiopatologia , Termogênese , Animais , Regulação da Temperatura Corporal , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Proteínas/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...