Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 259: 119576, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996958

RESUMO

The interaction between extracellular polymeric substances (EPS) in municipal sludge and antibiotics in wastewater is critical in wastewater treatment, resource recovery, and sludge management. Therefore, it is increasingly urgent to investigate the distribution coefficient (Log K) of sulfonamide antibiotics (SAs) in EPS, particularly in sludge-derived dissolved organic carbon (DOC) and aqueous phase systems. Herein, through balance experiments, the concentrations of SAs were determined using alkaline extraction EPS (AEPS) and alginate-like extracellular polymer (ALE) systems, and the Log KDOC values were determined. The results showed that the Log KDOC of AEPS was higher than that of ALE, which exhibited a negative KDOC value, indicating an inhibitory effect on dissolution. For the three SAs studied, the Log KDOC values were in the following order: sulfamethoxazole > sulfapyridine > sulfadiazine. This order can be attributed to the differing physicochemical properties, such as polarity, of the SAs. Three-dimensional excitation-emission matrix fluorescence spectra and fitting results indicated a lack of aromatic proteins dominated by tryptophan and humus-like substances in ALE. Meanwhile, the hydrophobic interaction of aromatic proteins dominated by tryptophan was the main driving force in the binding process between AEPS and SAs.

2.
Bioresour Technol ; 406: 131044, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936679

RESUMO

The recovery of biopolymers, particularly alginate-like extracellular polymers, from municipal sludge represents a promising step toward sustainable sludge treatment practices. Originating from wastewater plants in complexly polluted environments, alginate-like extracellular polymers carry potential environmental risks concerning their reuse. This study employs ultrahigh-performance liquid chromatography-tandem mass spectrometry to investigate the distribution coefficients and occurrence of alginate-like extracellular polymers and sulfamethoxazole. Results demonstrate a negative distribution coefficient, suggesting an inhibitory effect on sulfamethoxazole dissolution. The ethanol-extracted alginate-like extracellular polymers exhibits higher sulfamethoxazole levels (approximately 52%) than those obtained via dialysis extraction. Three-dimensional excitation-emission matrix analysis and adsorption studies indicate the absence of tyrosine-like substances in the alginate-like extracellular polymers, unlike in other extracellular polymeric substances. This absence diminishes hydrophobic interactions, highlighting that electrostatic interactions play a more important role. These insights are crucial for understanding the adsorption behavior of alginate-like extracellular polymers and optimizing their large-scale extraction processes.


Assuntos
Alginatos , Esgotos , Sulfametoxazol , Alginatos/química , Esgotos/química , Adsorção , Ácido Glucurônico/química , Cromatografia Líquida de Alta Pressão , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Polímeros/química , Espectrometria de Massas em Tandem
3.
Huan Jing Ke Xue ; 44(2): 1163-1173, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775638

RESUMO

As a direct carbon emission source, the amount of nitrous oxide (N2, which is actually caused by AOB denitrification. To control the N2O emission during biological N-removal, complete HND and NO2- accumulation for AOB denitrification should be avoided to a large extent. For this purpose, DO in aerobic tanks should be controlled at a normal level (approximately 2 mg·L-1), and solid retention time (SRT) should be extended, up to 20 d, which would avoid accumulating N2O for AOB denitrification. Additionally, external carbon should be supplemented in time to promote HDN approaching the end, N2. This review summarizes the mechanisms of all the mentioned N2O emission pathways and discusses the control strategies of N2O emission according to the associated mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...