Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 137: 197-203, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25770625

RESUMO

Routine native immobilized pH gradient isoelectric focusing (IPG-IEF) and two-dimensional gel electrophoresis (2DE) are still suffering from unfortunate reproducibility, poor resolution (caused by protein precipitation) and instability in characterization of intact protein isoforms and posttranslational modifications. Based on the concept of moving reaction boundary (MRB), we firstly proposed a tunable non-IPG-IEF system to address these issues. By choosing proper pairs of catholyte and anolyte, we could achieve desired cathodic and anodic migrating pH gradients in non-IPG-IEF system, effectively eliminating protein precipitation and uncertainty of quantitation existing in routine IEF and 2DE, and enhancing the resolution and sensitivity of IEF. Then, an adjustable 2DE system was developed by combining non-IPG-IEF with polyacrylamide gel electrophoresis (PAGE). The improved 2DE was evaluated by testing model proteins and colon cancer cell lysates. The experiments revealed that (i) a tunable pH gradient could be designed via MRB; (ii) up to 1.65 fold improvement of resolution was achieved via non-IPG-IEF; (iii) the sensitivity of developed techniques was increased up to 2.7 folds; and (iv) up to about 16.4% more protein spots could be observed via the adjustable 2DE as compared with routine one. The developed techniques might contribute to complex proteome research, especially for screening of biological marker and analysis of extreme acidic/alkaline proteins.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Focalização Isoelétrica/métodos , Proteômica/métodos , Precipitação Química , Células HCT116 , Humanos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...