Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 22147-22154, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639142

RESUMO

The high performance of a multistage thermoelectric cooler (multi-TEC) used in a wide low-temperature range depends on the optimized thermoelectric (TE) performance of materials during the corresponding working temperature range for each stage. Despite decades of research on the commercial TE materials of Bi2Te3, the main research is still focused on temperatures above 300 K, lacking suitable hierarchical low-temperature n-Bi2Te3 for multistage TEC. In this work, we systematically investigated the influence of doping concentration and matrix material compositions on the TE performance of n-Bi2Te3 below room temperature by the high-energy ball milling and hot deformation. Consequently, two hierarchical n-Bi2Te3 materials with excellent mechanical properties working below 248 and around 298 K, respectively, have been screened out. The Bi2Te2.7Se0.3 + 0.03 wt % TeI4 can be adopted in a low-temperature range that exhibits the high average figure of merit (zTave) of 0.61 within 173-248 K. Meanwhile, the Bi2Te2.7Se0.3 + 0.05 wt % TeI4 sample displays a competitive zTave of 0.85 within 248-298 K, which can be applied above 248 K. The research of hierarchical TE materials provides valuable insights into the high-performance design of multistage TE cooling devices.

2.
J Hazard Mater ; 468: 133831, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402684

RESUMO

Microorganisms, especially viruses, cause disease in both humans and animals. Environmental chemical pollutants including microplastics, pesticides, antibiotics sand air pollutants arisen from human activities affect both animal and human health. This review assesses the impact of chemical and biological contaminants (virus and bacteria) on viruses including its life cycle, survival, mutations, loads and titers, shedding, transmission, infection, re-assortment, interference, abundance, viral transfer between cells, and the susceptibility of the host to viruses. It summarizes the sources of environmental contaminants, interactions between contaminants and viruses, and methods used to mitigate such interactions. Overall, this review provides a perspective of environmentally co-occurring contaminants on animal viruses that would be useful for future research on virus-animal-human-ecosystem harmony studies to safeguard human and animal health.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Praguicidas , Vírus , Poluentes Químicos da Água , Animais , Humanos , Poluentes Ambientais/toxicidade , Poluentes Atmosféricos/toxicidade , Microplásticos , Plásticos , Monitoramento Ambiental/métodos , Ecossistema , Praguicidas/toxicidade , Antibacterianos , Bactérias , Poluentes Químicos da Água/química
3.
Innovation (Camb) ; 5(2): 100564, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379787

RESUMO

The type V-I CRISPR-Cas system is becoming increasingly more attractive for genome editing. However, natural nucleases of this system often exhibit low efficiency, limiting their application. Here, we used structure-guided rational design and protein engineering to optimize an uncharacterized Cas12i nuclease, Cas12i3. As a result, we developed Cas-SF01, a Cas12i3 variant that exhibits significantly improved gene editing activity in mammalian cells. Cas-SF01 shows comparable or superior editing performance compared to SpCas9 and other Cas12 nucleases. Compared to natural Cas12i3, Cas-SF01 has an expanded PAM range and effectively recognizes NTTN and noncanonical NATN and TTVN PAMs. In addition, we identified an amino acid substitution, D876R, that markedly reduced the off-target effect while maintaining high on-target activity, leading to the development of Cas-SF01HiFi (high-fidelity Cas-SF01). Finally, we show that Cas-SF01 has high gene editing activities in mice and plants. Our results suggest that Cas-SF01 can serve as a robust gene editing platform with high efficiency and specificity for genome editing applications in various organisms.

4.
ACS Appl Mater Interfaces ; 15(50): 59066-59074, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051946

RESUMO

Electrode diffusion barrier plays an important role in thermoelectric cooling devices. Compared with p-type Bi0.5Sb1.5Te3, the compatibility between commercial Ni barrier and n-type Bi2Te2.7Se0.3 is a key bottleneck to enhance the performance of Bi2Te3-based cooling devices. This paper proposed a NiP alloy barrier to improve the compatibility with n-type Bi2Te2.7Se0.3, and systemically investigated the contact and interfacial dynamics properties. Due to the low diffusion rate of NiP alloy, the initial interfacial contact resistivity of Bi2Te2.7Se0.3/NiP is as low as 0.90 µΩ cm2, and it further can be depressed below 1.98 µΩ cm2 even after aging at 423 K for 35 days, indicating the superior thermal stability of the NiP barrier layer compared to the commercial Ni barrier layer. Based on the NiP barrier, a 15-pair bismuth telluride device is prepared and a high cooling temperature difference of 71.5 K at a hot-side temperature of 304 K is achieved, which proves the practical applications potential of NiP barrier for Bi2Te3-based modules.

6.
Mater Horiz ; 10(8): 3082-3089, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37218449

RESUMO

The new rising binary InTe displays advantageously high electronic conductivity and low thermal conductivity along the [110] direction, providing a high potential of texture modulation for thermoelectric performance improvement. In this work, coarse crystalline InTe material with a high degree of texture along the [110] direction was realized by the oriented crystal hot-deformation method. The coarse grains with high texture not only maintain the preferred orientation of the zone-melting crystal as far as possible, but also greatly depress the grain boundary scattering, thus leading to the highest room temperature power factor of 8.7 µW cm-1 K-1 and a high average figure of merit of 0.71 in the range of 300-623 K. Furthermore, the polycrystalline characteristic with refined grains also promotes the mechanical properties. As a result, an 8-couple thermoelectric generator module consisting of p-type InTe and commercial n-type Bi2Te2.7Se0.3 legs was successfully integrated and a high conversion efficiency of ∼5.0% under the temperature difference of 290 K was achieved, which is comparable to traditional Bi2Te3 based modules. This work not only demonstrates the potential of InTe as a power generator near room temperature, but also provides one more typical example of a texture modulation strategy beyond the traditional Bi2Te3 thermoelectrics.

7.
Small ; 19(24): e2300654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919261

RESUMO

The carrier concentration in n-type layered Bi2 Te3 -based thermoelectric (TE) material is significantly impacted by the donor-like effect, which would be further intensified by the nonbasal slip during grain refinement of crushing, milling, and deformation, inducing a big challenge to improve its TE performance and mechanical property simultaneously. In this work, high-energy refinement and hot-pressing are used to stabilize the carrier concentration due to the facilitated recovery of cation and anion vacancies. Based on this, combined with SbI3 doping and hot deformation, the optimized carrier concentration and high texture degree are simultaneously realized. As a result, a peak figure of merit (zT) of 1.14 at 323 K for Bi2 Te2.7 Se0.3  + 0.05 wt.% SbI3 sample with the high bending strength of 100 Mpa is obtained. Furthermore, a 31-couple thermoelectric cooling device consisted of n-type Bi2 Te2.7 Se0.3  + 0.05 wt.% SbI3 and commercial p-type Bi0.5 Sb1.5 Te3 legs is fabricated, which generates the large maximum temperature difference (ΔTmax ) of 85 K at a hot-side temperature of 343 K. Thus, the discovery of recovery effect in high energy refinement and hot-pressing has significant implications for improving TE performance and mechanical strength of n-type Bi2 Te3 , thereby promoting its applications in harsh conditions.

8.
Nat Commun ; 13(1): 7738, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517476

RESUMO

Unsatisfied electrode bonding in half-Heusler devices renders thermal damage and large efficiency loss, which limits their practical service at high temperatures. Here, we develop a thermodynamic strategy to screen barrier layer elements. Theoretically, we found that the interface between VIIB elements and half-Heuslers possesses near-zero interfacial reaction energy and large atomic diffusion barrier. Experimentally, such an interphase proves to be the atomic direct bonding and has high thermal stability at 1073 K, leading to ideal ohmic contact. Such thermally inert and ohmic contact interface enable modules stably to work at elevated temperature up to 1100 K, which releases the peak performance of half-Heuslers and in turn boosts the energy conversion efficiencies to the records of 11.1% and 13.3% for half-Heusler single-stage and half-Heusler/Bi2Te3 segmented modules. This design strategy provides a feasible solution for the high-temperature half-Heusler generators and gives enlightenment for other package interconnection design of electronic devices.

9.
ACS Appl Mater Interfaces ; 14(48): 54044-54050, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36413600

RESUMO

The exploration of new synthesis methods is important for the improvement of the thermoelectric property of a material for the different mechanisms of microstructure fabrication, surface activity modulation, and particle refinement. Herein, we prepared p-Bi2Te3 bulk materials by a simple synthesis method of the plasma-assisted ball milling, which yielded finer nanopowders, higher texture of in-plane direction, and higher efficiency compared to the traditional ball milling, favoring the simultaneous improvement of electrical and thermal properties. When combined with the Te liquid sintering, nano-/microscale hierarchical pores were fabricated and the carrier mobility was also increased, which together resulted in the low lattice thermal conductivity of 0.52 W·m-1·K-1 and the high power factor of 43.4 µW·cm-1·K-2 at 300 K, as well as the ranking ahead zT of 1.4@375 K. Thus, this work demonstrated the advantages of plasma-assisted ball milling in highly efficient synthesis of p-type Bi2Te3 with promising thermoelectric performance, which can also be utilized to prepare other thermoelectric materials.

10.
Small ; 17(25): e2100915, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34032385

RESUMO

Manipulations of carrier and phonon scatterings through hierarchical structures have been proved to be effective in improving thermoelectric performance. Previous efforts in GeTe-based materials mainly focus on simultaneously optimizing the carrier concentration and band structure. In this work, a synergistic strategy to tailor thermal and electrical transport properties of GeTe by combination with the scattering effects from both Ge vacancies and other defects is reported. The addition of Fe in GeTe-based compounds introduces the secondary phase of FeGe2 , synchronously increasing the concentration of Ge vacancies and arousing more Ge planar defects. These hierarchical defects contribute to a large scattering factor, leading to a significant enhancement of Seebeck coefficient and further a splendid power factor. Meanwhile, benefiting from the reinforced phonon scatterings by multiscale hierarchical structures, an extremely low lattice thermal conductivity is successfully achieved. With simultaneously optimized electrical and thermal transport properties, a maximum figure of merit, zT, value of 2.1 at 750 K and an average zT value of 1.5 in 400-800 K are realized in Ge0.875 Sb0.08 Te/1.5%FeGe2 . This work demonstrates that manipulation of hierarchical defects is an effective strategy to optimize the thermoelectric properties.

11.
Angew Chem Int Ed Engl ; 60(3): 1290-1297, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32996683

RESUMO

Arranging ionic liquids (ILs) with long-range order can not only enhance their performance in a desired application, but can also help elucidate the vital between structure and properties. However, this is still a challenge and no example has been reported to date. Herein, we report a feasible strategy to achieve a crystalline IL via coordination self-assembly based reticular chemistry. IL1 MOF, was prepared by designing an IL bridging ligand and then connecting them with metal clusters. IL1 MOF has a unique structure, where the IL ligands are arranged on a long-range ordered framework but have a labile ionic center. This structure enables IL1 MOF to break through the typical limitation where the solid ILs have lower proton conductivity than their counterpart bulk ILs. IL1 MOF shows 2-4 orders of magnitude higher proton conductivity than its counterpart IL monomer across a wide temperature range. Moreover, by confining the IL within ultramicropores (<1 nm), IL1 MOF suppresses the liquid-solid phase transition temperatures to lower than -150 °C, allowing it to function with high conductivity in a subzero temperature range.

12.
Adv Sci (Weinh) ; 7(12): 1902628, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32596105

RESUMO

In-grain dislocation-induced lattice strain fluctuations are recently revealed as an effective avenue for minimizing the lattice thermal conductivity. This effect could be integratable with electronic enhancements such as by band convergence, for a great advancement in thermoelectric performance. This motivates the current work to focus on the thermoelectric enhancements of p-type PbTe alloys, where monotelluride-alloying and Na-doping are used for a simultaneous manipulation on both dislocation and band structures. As confirmed by synchrotron X-ray diffractions and Raman measurements, the resultant dense in-grain dislocations induce lattice strain fluctuations for broadening the phonon dispersion, leading to an exceptionally low lattice thermal conductivity of ≈0. 4 W m-K-1. Band structure calculations reveal the convergence of valence bands due to monotelluride-alloying. Eventually, the integration of both electronic and thermal improvements lead to a realization of an extraordinary figure of merit zT of ≈2.5 in Na0.03Eu0.03Cd0.03Pb0.91Te alloy at 850 K.

13.
Nat Commun ; 11(1): 2723, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483181

RESUMO

Although the CoSb3-based skutterudite thermoelectric devices have been highly expected for wide uses such as waste heat recovery and space power supply, the limited long-term service stability majorly determined by the degradation of electrode interface obstructs its applications. Here, we built up an effective criterion for screening barrier layer based on the combination of negative interfacial reaction energy and high activation energy barrier of Sb migration through the formed interfacial reaction layer. Accordingly, we predicted niobium as a promising barrier layer. The experimental results show the skutterudite/Nb joint has the slowest interfacial reaction layer growth rate and smallest interfacial electrical resistivity. The fabricated 8-pair skutterudite module using Nb as barrier layer achieves a recorded conversion efficiency of 10.2% at hot-side temperature of 872 K and shows excellent stability during long-time aging. This simple criterion provides an effective guidance on screening barrier layer with bonding-blocking-conducting synergetic functions for thermoelectric device integration.

15.
Natl Sci Rev ; 6(5): 944-954, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34691955

RESUMO

GeTe-based compounds have been intensively studied recently due to their superior thermoelectric performance, but their real applications are still limited so far due to the drastic volume variation that occurs during the rhombohedral-cubic phase transition, which may break the material or the material/electrode interface during service. Here, superior performance and high service stability for GeTe-based thermoelectric compounds are achieved by co-doping Mg and Sb into GeTe. The linear coefficient of thermal expansion before phase transition is greatly improved to match that after phase transition, yielding smooth volume variation around the phase transition temperature. Likewise, co-doping (Mg, Sb) in GeTe successfully tunes the carrier concentration to the optimal range and effectively suppresses the lattice thermal conductivity. A peak zT of 1.84 at 800 K and an average zT of 1.2 in 300-800 K have been achieved in Ge0.85Mg0.05Sb0.1Te. Finally, a Ni/Ti/Ge0.85Mg0.05Sb0.1Te thermoelectric uni-leg is fabricated and tested, showing quite good service stability even after 450 thermal cycles between 473 K and 800 K. This study will accelerate the application of GeTe-based compounds for power generation in the mid-temperature range.

16.
ACS Appl Mater Interfaces ; 10(45): 39245-39256, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346124

RESUMO

Ceramic composites with good electrical conductivity and high strength that can provide electromagnetic interference (EMI) shielding are highly desirable for the applications in harsh environment. In this study, lightweight, highly conductive, and strong mullite composites incorporated with reduced graphene oxide (rGO) are successfully fabricated by spark plasma sintering at merely 1200 °C using the core-shell structured γ-Al2O3@SiO2 powder as a precursor. The transient viscous sintering induced by the γ-Al2O3@SiO2 precursor not only prohibits the reaction between mullite and rGO by greatly reducing the sintering temperature, but also induces a highly anisotropic structure in the rGO/mullite composite, leading to an extremely high in-plane electrical conductivity (696 S m-1 for only 0.89 vol % of rGO) and magnitude lower cross-plane electrical conductivity in the composites. As a result, very large loss tangent and EMI shielding effectiveness (>32 dB) can be achieved in the whole K band with extremely low rGO loading (less than 1 vol %), which is beneficial to maintain a good mechanical performance in ceramic matrix composites. Accordingly, the rGO/mullite composites show greatly improved strength and toughness when the rGO content is not high, which enables them to be applied as highly efficient EMI shielding materials while providing excellent mechanical performance.

17.
Nat Mater ; 17(7): 652, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29849172

RESUMO

In the version of this Article originally published, the x-axis numbers of Fig. 3d were incorrect; the range should have been 0 to 12 instead of 1 to 13. This has now been corrected.

18.
Nat Mater ; 17(5): 421-426, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632407

RESUMO

Ductility is common in metals and metal-based alloys, but is rarely observed in inorganic semiconductors and ceramic insulators. In particular, room-temperature ductile inorganic semiconductors were not known until now. Here, we report an inorganic α-Ag2S semiconductor that exhibits extraordinary metal-like ductility with high plastic deformation strains at room temperature. Analysis of the chemical bonding reveals systems of planes with relatively weak atomic interactions in the crystal structure. In combination with irregularly distributed silver-silver and sulfur-silver bonds due to the silver diffusion, they suppress the cleavage of the material, and thus result in unprecedented ductility. This work opens up the possibility of searching for ductile inorganic semiconductors/ceramics for flexible electronic devices.

19.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833741

RESUMO

High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches.


Assuntos
Entropia , Eletricidade , Condutividade Térmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...