Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1402478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911325

RESUMO

Introduction: This study was undertaken to explore the potential therapeutic effects of Tongyang Huoxue Granules (TYHX) on sinoatrial node (SAN) dysfunction, a cardiac disorder characterized by impaired impulse generation or conduction. The research question addressed whether TYHX could positively influence SAN ion channel function, specifically targeting the sodium-calcium exchanger (I NCX) and L-type calcium channel (I CaL) of the SAN. Methods: Sinoatrial node cells (SANCs) were isolated and cultured from neonatal Japanese big-eared white rabbits within 24 h of birth. The study encompassed five groups: Control, H/R (hypoxia/reoxygenation), H/R+100 µg/mL TYHX, H/R+200 µg/mL TYHX, and H/R+400 µg/mL TYHX. The H/R model, simulating hypoxia/reoxygenation stress, was induced within 5 days of culture. Whole-cell patch clamp technique was employed to record currents following a 3-min perfusion and stabilization period with TYHX. Results: TYHX administration demonstrated improvements in the ignition phase of impaired SANCs. The half-maximal effective dose of TYHX, as determined by SANC beating frequency, was found to be 323.63 µg/mL. Inward current density of I NCX increased in response to TYHX (200 and 400 µg/mL), while TYHX enhanced I CaL current density in H/R SANCs, with 400 µg/mL exhibiting greater efficacy. Additionally, TYHX regulated the gating mechanisms of I CaL by right-shifting the steady-state inactivation curve and accelerating recovery from inactivation. Notably, TYHX increased the activation time constant under 200 and 400 µg/mL, prolonged the fast inactivation time constant τ1 with 400 µg/mL, and extended the slow inactivation time constant τ2 with 100 and 400 µg/mL. Discussion and conclusion: The findings suggest that TYHX may hold promise as a therapeutic intervention for sinus node dysfunction, offering potential avenues for drug development aimed at safeguarding SAN function.

2.
Cell Stress Chaperones ; 29(3): 510-518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821173

RESUMO

Heart failure (HF) refers to a group of clinical syndromes in which various heart diseases lead to the inability of cardiac output to meet the metabolic needs of the body's tissues. Cardiac metabolism requires enormous amounts of energy; thus, impaired myocardial energy metabolism is considered a key factor in the occurrence and development of HF. Mitochondria serve as the primary energy source for cardiomyocytes, and their regular functionality underpins healthy cardiac function. The mitochondrial quality control system is a crucial mechanism for regulating the functionality of cardiomyocytes, and any abnormality in this system can potentially impact the morphology and structure of mitochondria, as well as the energy metabolism of cardiomyocytes. Phosphoglycerate mutase 5 (PGAM5), a multifunctional protein, plays a key role in the regulation of mitochondrial quality control through multiple pathways. Therefore, abnormal PGAM5 function is closely related to mitochondrial damage. This article reviews the mechanism of PGAM5's involvement in the regulation of the mitochondrial quality control system in the occurrence and development of HF, thereby providing a theoretical basis for future in-depth research.


Assuntos
Insuficiência Cardíaca , Mitocôndrias Cardíacas , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Animais , Mitocôndrias Cardíacas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias/metabolismo , Metabolismo Energético
3.
Phytother Res ; 38(5): 2496-2517, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447978

RESUMO

We investigated the mechanism by which quercetin preserves mitochondrial quality control (MQC) in cardiomyocytes subjected to ischemia-reperfusion stress. An enzyme-linked immunosorbent assay was employed in the in vivo experiments to assess myocardial injury markers, measure the transcript levels of SIRT5/DNAPK-cs/MLKL during various time intervals of ischemia-reperfusion, and observe structural changes in cardiomyocytes using transmission electron microscopy. In in vitro investigations, adenovirus transfection was employed to establish a gene-modified model of DNA-PKcs, and primary cardiomyocytes were obtained from a mouse model with modified SIRT5 gene. Reverse transcription polymerase chain reaction, laser confocal microscopy, immunofluorescence localization, JC-1 fluorescence assay, Seahorse energy analysis, and various other assays were applied to corroborate the regulatory influence of quercetin on the MQC network in cardiomyocytes after ischemia-reperfusion. In vitro experiments demonstrated that ischemia-reperfusion injury caused changes in the structure of the myocardium. It was seen that quercetin had a beneficial effect on the myocardial tissue, providing protection. As the ischemia-reperfusion process continued, the levels of DNA-PKcs/SIRT5/MLKL transcripts were also found to change. In vitro investigations revealed that quercetin mitigated cardiomyocyte injury caused by mitochondrial oxidative stress through DNA-PKcs, and regulated mitophagy and mitochondrial kinetics to sustain optimal mitochondrial energy metabolism levels. Quercetin, through SIRT5 desuccinylation, modulated the stability of DNA-PKcs, and together they regulated the "mitophagy-unfolded protein response." This preserved the integrity of mitochondrial membrane and genome, mitochondrial dynamics, and mitochondrial energy metabolism. Quercetin may operate synergistically to oversee the regulation of mitophagy and the unfolded protein response through DNA-PKcs-SIRT5 interaction.


Assuntos
Miócitos Cardíacos , Quercetina , Sirtuínas , Quercetina/farmacologia , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Camundongos , Sirtuínas/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitofagia/efeitos dos fármacos
4.
3D Print Addit Manuf ; 10(4): 609-618, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37609578

RESUMO

The challenges in reliably removing the sacrificial material from fully enclosed microfluidic channels hinder the use of three-dimensional (3D) printing to create microfluidic devices with intricate geometries. With advances in printer resolution, the etching of sacrificial materials from increasingly smaller channels is poised to be a bottleneck using the existing techniques. In this study, we introduce a microfabrication approach that utilizes centrifugation to effortlessly and efficiently remove the sacrificial materials from 3D-printed microfluidic devices with densely packed microfeatures. We characterize the process by measuring the etch rate under different centrifugal forces and developed a theoretical model to estimate process parameters for a given geometry. The effect of the device layout on the centrifugal etching process is also investigated. We demonstrate the applicability of our approach on devices fabricated using inkjet 3D printing and stereolithography. Finally, the advantages of the introduced approach over commonly used injection-based etching of sacrificial material are experimentally demonstrated in direct comparisons. A robust method to postprocess additively manufactured geometries composed of intricate microfluidic channels can help utilize both the large printing volume and high spatial resolution afforded by 3D printing in creating a variety of devices ranging from scaffolds to large-scale microfluidic assays.

5.
Medicine (Baltimore) ; 102(24): e33979, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327281

RESUMO

Patients with sick sinus syndrome (SSS) experience a decrease in health-related quality of life (HRQoL), but there is currently no scale available to measure their unpleasant symptoms. The Short Form 36 Health Survey (SF-36) is a commonly used scale to assess HRQoL. In this study, we aimed to evaluate the reliability, validity, and sensitivity of SF-36 in patients with SSS. The sample included 199 eligible participants. We estimated the reliability through test-retest reliability, internal consistency, and split-half reliability. To examine the validity of the questionnaire, confirmatory factor analysis, convergent validity, and discriminant validity were conducted. Sensitivity was determined by the differences in age (cutoff 65 years) and New York Heart Association class. The intraclass correlational coefficients scores showed high test-retest reliability (intraclass correlational coefficients > 0.7). The overall Cronbach α was 0.87 (8 scales range: 0.85-0.87), showing good internal consistency reliability. The split-half reliability coefficient of the SF-36 is 0.814, indicating good reliability. Factor analysis showed that SF-36 subscales could be drawn into 6 components that explain 61% of the total variance. Results of model fit indicate comparative fit index = 0.9, incremental fit index = 0.92, Turker-Lewis index = 0.90, approximate root mean square error = 0.07, and normalized root mean square residual = 0.06. Convergent validity and discriminative validity showed adequate results. Comparison of different ages and New York Heart Association class groups showed statistical significance on most SF-36 subscales. We confirmed the SF-36 as a valid instrument for evaluating HRQoL patients with SSS. The reliability, validity, and sensitivity of SF-36 are acceptable for patients with SSS.


Assuntos
Qualidade de Vida , Síndrome do Nó Sinusal , Humanos , Idoso , Reprodutibilidade dos Testes , Síndrome do Nó Sinusal/diagnóstico , Psicometria/métodos , Inquéritos e Questionários , Inquéritos Epidemiológicos
6.
Biomed Pharmacother ; 160: 114413, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805187

RESUMO

Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.


Assuntos
Fibrilação Atrial , Canais de Cálcio , Humanos , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Frequência Cardíaca
7.
Int J Biol Sci ; 19(2): 426-448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632466

RESUMO

Ischemic cardiomyopathy (ICM) is a special type of coronary heart disease or an advanced stage of the disease, which is related to the pathological mechanism of primary dilated cardiomyopathy. Ischemic cardiomyopathy mainly occurs in the long-term myocardial ischemia, resulting in diffuse myocardial fibrosis. This in turn affects the cardiac ejection function, resulting in a significant impact on myocardial systolic and diastolic function, resulting in a decrease in the cardiac ejection fraction. The pathogenesis of ICM is closely related to coronary heart disease. Mainly due to coronary atherosclerosis caused by coronary stenosis or vascular occlusion, causing vascular inflammatory lesions and thrombosis. As the disease progresses, it leads to long-term myocardial ischemia and eventually ICM. The pathological mechanism is mainly related to the mechanisms of inflammation, myocardial hypertrophy, fibrosis and vascular remodeling. Mitochondria are organelles with a double-membrane structure, so the composition of the mitochondrial outer compartment is basically similar to that of the cytoplasm. When ischemia-reperfusion induces a large influx of calcium into the cell, the concentration of calcium ions in the mitochondrial outer compartment also increases. The subsequent opening of the membrane permeability transition pore in the inner mitochondrial membrane and the resulting calcium overload induces the homeostasis of cardiomyocytes and activates the mitochondrial pathway of apoptosis. Mitochondrial Quality Control (MQC), as an important mechanism for regulating mitochondrial function in cardiomyocytes, affects the morphological structure/function and lifespan of mitochondria. In this review, we discuss the role of MQC (including mitophagy, mitochondrial dynamics, and mitochondrial biosynthesis) in the pathogenesis of ICM and provide important evidence for targeting MQC for ICM.


Assuntos
Cardiomiopatias , Isquemia Miocárdica , Humanos , Cálcio/metabolismo , Isquemia Miocárdica/patologia , Cardiomiopatias/metabolismo , Miocárdio/metabolismo , Mitocôndrias/metabolismo
8.
Biomed Pharmacother ; 159: 114171, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36641924

RESUMO

Mitochondrial dysfunction is the main cause of damage to the pathological mechanism of ischemic cardiomyopathy. In addition, mitochondrial dysfunction can also affect the homeostasis of cardiomyocytes or endothelial cell dysfunction, leading to a vicious cycle of mitochondrial oxidative stress. And mitochondrial dysfunction is also an important pathological basis for ischemic cardiomyopathy and reperfusion injury after myocardial infarction or end-stage coronary heart disease. Therefore, mitochondria can be used as therapeutic targets against myocardial ischemia injury, and the regulation of mitochondrial morphology, function and structure is a key and important way of targeting mitochondrial quality control therapeutic mechanisms. Mitochondrial quality control includes mechanisms such as mitophagy, mitochondrial dynamics (mitochondrial fusion/fission), mitochondrial biosynthesis, and mitochondrial unfolded protein responses. Among them, the increase of mitochondrial fragmentation caused by mitochondrial pathological fission is the initial factor. The protective mitochondrial fusion can strengthen the interaction and synthesis of paired mitochondria and promote mitochondrial biosynthesis. In ischemia or hypoxia, pathological mitochondrial fission can promote the formation of mitochondrial fragments, fragmented mitochondria can lead to damaged mitochondrial DNA production, which can lead to mitochondrial biosynthesis dysfunction, insufficient mitochondrial ATP production, and mitochondrial ROS. Burst growth or loss of mitochondrial membrane potential. This eventually leads to the accumulation of damaged mitochondria. Then, under the leadership of mitophagy, damaged mitochondria can complete the mitochondrial degradation process through mitophagy, and transport the morphologically and structurally damaged mitochondria to lysosomes for degradation. But once the pathological mitochondrial fission increases, the damaged mitochondria increases, which may activate the pathway of cardiomyocyte death. Although laboratory studies have found that a variety of mitochondrial-targeted drugs can reduce myocardial ischemia and protect cardiomyocytes, there are still few drugs that have successfully passed clinical trials. In this review, we describe the role of MQS in ischemia/hypoxia-induced cardiomyocyte physiopathology and elucidate the relevant mechanisms of mitochondrial dysfunction in ischemic cardiomyopathy. In addition, we also further explained the advantages of natural products in improving mitochondrial dysfunction and protecting myocardial cells from the perspective of pharmacological mechanism, and explained its related mechanisms. Potential targeted therapies that can be used to improve MQS under ischemia/hypoxia are discussed, aiming to accelerate the development of cardioprotective drugs targeting mitochondrial dysfunction.


Assuntos
Cardiomiopatias , Medicamentos de Ervas Chinesas , Doenças Mitocondriais , Infarto do Miocárdio , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hipóxia , Cardiomiopatias/tratamento farmacológico
9.
Phytomedicine ; 108: 154502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36274412

RESUMO

BACKGROUND: TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE: The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS: Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on ß-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS: Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by ß-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of ß-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION: Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.


Assuntos
Medicamentos de Ervas Chinesas , Sirtuína 1 , Tubulina (Proteína) , Humanos , Hipóxia , Mitocôndrias , Quercetina/farmacologia , Nó Sinoatrial/citologia , Nó Sinoatrial/metabolismo , Sirtuína 1/metabolismo , Tubulina (Proteína)/metabolismo , Medicamentos de Ervas Chinesas/farmacologia
10.
Phytomedicine ; 132: 155331, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870748

RESUMO

BACKGROUND: Zishenhuoxue decoction (ZSHX), a Chinese herbal medicine, exhibits myocardial and vascular endothelial protective properties. The intricate regulatory mechanisms underlying myocardial ischemic injury and its association with dysfunctional mitochondrial quality surveillance (MQS) remain elusive. HYPOTHESIS/PURPOSE: To study the protective effect of ZSHX on ischemic myocardial injury in mice using a TMBIM6 gene-modified animal model and mitochondrial quality control-related experiments. STUDY DESIGN: Using model animals and myocardial infarction surgery-induced ischemic myocardial injury TMBIM6 gene-modified mouse models, the pharmacological activity of ZSHX in inhibiting ischemic myocardial injury and mitochondrial homeostasis disorder in vivo was tested. METHODS: Our focal point entailed scrutinizing the impact of ZSHX on ischemic myocardial impairment through the prism of TMBIM6. This endeavor was undertaken utilizing mice characterized by heart-specific TMBIM6 knockout (TMBIM6CKO) and their counterparts, the TMBIM6 transgenic (TMBIM6TG) and VDAC1 transgenic (VDAC1TG) mice. RESULTS: ZSHX demonstrated dose-dependent effectiveness in mitigating ischemic myocardial injury and enhancing mitochondrial integrity. TMBIM6CKO hindered ZSHX's cardio-therapeutic and mitochondrial protective effects, while ZSHX's benefits persisted in TMBIM6TG mice. TMBIM6CKO also blocked ZSHX's regulation of mitochondrial function in HR-treated cardiomyocytes. Hypoxia disrupted the MQS in cardiomyocytes, including calcium overload, excessive fission, mitophagy issues, and disrupted biosynthesis. ZSHX counteracted these effects, thereby normalizing MQS and inhibiting calcium overload and cardiomyocyte necroptosis. Our results also showed that hypoxia-induced TMBIM6 blockade resulted in the over-activation of VDAC1, a major mitochondrial calcium uptake pathway, while ZSHX could increase the expression of TMBIM6 and inhibit VDAC1-mediated calcium overload and MQS abnormalities. CONCLUSIONS: Our findings suggest that ZSHX regulates mitochondrial calcium homeostasis and MQS abnormalities through a TMBIM6-VDAC1 interaction mechanism, which helps to treat ischemic myocardial injury and provides myocardial protection. This study also offers insights for the clinical translation and application of mitochondrial-targeted drugs in cardiomyocytess.

11.
Front Cardiovasc Med ; 9: 991503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440047

RESUMO

Sick sinus syndrome (SSS) is a refractory arrhythmia disease caused by the pathological changes of sinoatrial node and its adjacent tissues. 2,251 publications related to SSS were retrieved from Web of Science database from 2000 to 2022 and analyzed by using VOS viewer and CiteSpace software. The results showed the United States dominated the field, followed by Japan, Germany, and China. SSS was closely related to risk factors such as atrial fibrillation and aging. Sick sinus syndrome, atrial fibrillation and sinus node dysfunction were the top three keywords that had the strongest correlation with the study. Pacemaker implantation, differentiation and mutation are research hotspots currently. Clinical studies on SSS found that sick sinus syndrome, atrial fibrillation, and pacemakers were the top three keywords that had the largest nodes and the highest frequency. In the field of basic applied research and basic research, atrial fibrillation and pacemaker cells were the focus of research. In conclusion, bibliometric analysis provided valuable information for the prevention, treatment and future research trends of SSS.

12.
Biomed Pharmacother ; 153: 113447, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076562

RESUMO

Cardiac arrhythmia is one of the most prevalent cardiovascular diseases worldwide, which can occur alone or be triggered by other diseases, and it can be fatal in severe cases. Recently, Traditional Chinese Medicine has drawn the world's attention to its effective treatment. As a natural polyhydroxy flavonoid mainly isolated from a variety of plants and foods, quercetin is used for the treatment of cardiovascular disease, cancer, autoimmune diseases, and neurological disorders. A growing number of in vitro experiments and in vivo animal studies have shown that quercetin significantly inhibits mitochondrial oxidative stress, cardiac fibrosis, inflammatory responses, and apoptosis, regulates autophagic responses, improves ischemia/reperfusion injury in cardiomyocytes, and regulates gut microbiota, thereby attenuating or preventing structural and electrical remodeling in the cardiac. Based on these mechanisms, our review provides a systematic overview of the pharmacological actions and molecular targets of quercetin in cardiac arrhythmia caused by multiple etiologies, aiming to provide novel insights and therapeutic strategies to prevent or ameliorate arrhythmia.


Assuntos
Quercetina , Traumatismo por Reperfusão , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Miócitos Cardíacos , Quercetina/farmacologia , Quercetina/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico
13.
Metabolism ; 137: 155313, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126721

RESUMO

Mitochondrial dysfunction has been regarded as a hallmark of diabetic cardiomyopathy. In addition to their canonical metabolic actions, mitochondria influence various other aspects of cardiomyocyte function, including oxidative stress, iron regulation, metabolic reprogramming, intracellular signaling transduction and cell death. These effects depend on the mitochondrial quality control (MQC) system, which includes mitochondrial dynamics, mitophagy and mitochondrial biogenesis. Mitochondria are not static entities, but dynamic units that undergo fission and fusion cycles to maintain their structural integrity. Increased mitochondrial fission elevates the number of mitochondria within cardiomyocytes, a necessary step for cardiomyocyte metabolism. Enhanced mitochondrial fusion promotes communication and cooperation between pairs of mitochondria, thus facilitating mitochondrial genomic repair and maintenance. On the contrary, erroneous fission or reduced fusion promotes the formation of mitochondrial fragments that contain damaged mitochondrial DNA and exhibit impaired oxidative phosphorylation. Under normal/physiological conditions, injured mitochondria can undergo mitophagy, a degradative process that delivers poorly structured mitochondria to lysosomes. However, defective mitophagy promotes the accumulation of nonfunctional mitochondria, which may induce cardiomyocyte death. A decline in the mitochondrial population due to mitophagy can stimulate mitochondrial biogenesis), which generates new mitochondrial offspring to maintain an adequate mitochondrial number. Energy crises or ATP deficiency also increase mitochondrial biogenesis, because mitochondrial DNA encodes 13 subunits of the electron transport chain (ETC) complexes. Disrupted mitochondrial biogenesis diminishes the mitochondrial mass, accelerates mitochondrial senescence and promotes mitochondrial dysfunction. In this review, we describe the involvement of MQC in the pathogenesis of diabetic cardiomyopathy. Besides, the potential targeted therapies that could be applied to improve MQC during diabetic cardiomyopathy are also discussed and accelerate the development of cardioprotective drugs for diabetic patients.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/metabolismo , Mitofagia/genética , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , DNA Mitocondrial/genética , Diabetes Mellitus/metabolismo
14.
Nat Commun ; 13(1): 3385, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697674

RESUMO

Extremely rare circulating tumor cell (CTC) clusters are both increasingly appreciated as highly metastatic precursors and virtually unexplored. Technologies are primarily designed to detect single CTCs and often fail to account for the fragility of clusters or to leverage cluster-specific markers for higher sensitivity. Meanwhile, the few technologies targeting CTC clusters lack scalability. Here, we introduce the Cluster-Wells, which combines the speed and practicality of membrane filtration with the sensitive and deterministic screening afforded by microfluidic chips. The >100,000 microwells in the Cluster-Wells physically arrest CTC clusters in unprocessed whole blood, gently isolating virtually all clusters at a throughput of >25 mL/h, and allow viable clusters to be retrieved from the device. Using the Cluster-Wells, we isolated CTC clusters ranging from 2 to 100+ cells from prostate and ovarian cancer patients and analyzed a subset using RNA sequencing. Routine isolation of CTC clusters will democratize research on their utility in managing cancer.


Assuntos
Células Neoplásicas Circulantes , Humanos , Masculino , Células Neoplásicas Circulantes/patologia , Análise de Sequência de RNA
15.
Cardiovasc Ther ; 2022: 4114817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605374

RESUMO

Background: The transient outward potassium current (I to) and the ultrarapid delayed rectifier potassium current (I Kur) are major potassium currents involved in the repolarization process of sinoatrial node cells (SNCs). Methods and Results: The SNCs of neonatal rats were divided into control, ischemia/reperfusion (I/R), I/R+blank serum, and Tongyang Huoxue recipe (TYHX) serum groups. I to and I Kur were recorded using the whole cell patch-clamp technique, and the current-voltage (I-V), steady-state activation (SSA), steady-state inactivation (SSI), and recovery from inactivation (RFI) curves were plotted, respectively. Compared to the control group, both the peak current density and the current density at the voltage of I to and I Kur decreased obviously in SNCs after simulated I/R, the SSA curves moved right, and the SSI curves moved left. After TYHX was added to the extracellular solution of SNCs, both the peak current density and the current density at the voltage of I to and I Kur increased significantly, the SSA curves moved left, and the SSI curves moved right with a significant difference of V 1/2. The recovery from the I Kur RFI curves was slightly restored, and the I to curves did not change. Conclusions: TYHX increases the peak current density, accelerates the activation, and decreases the inactivation of the I to and I Kur. This may be the mechanism of TYHX in shortening the action potential duration of repolarization, which accelerates spontaneous pulsation.


Assuntos
Átrios do Coração , Canais de Potássio , Ratos , Animais , Canais de Potássio/farmacologia , Átrios do Coração/metabolismo , Nó Sinoatrial/metabolismo , Potenciais de Ação , Potássio/metabolismo , Potássio/farmacologia
16.
Lab Chip ; 22(2): 296-312, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34897353

RESUMO

Membrane antigens are phenotypic signatures of cells used for distinguishing various subpopulations and, therefore, are of great interest for diagnosis of diseases and monitoring of patients in hematology and oncology. Existing methods to measure antigen expression of a target subpopulation in blood samples require labor-intensive lysis of contaminating cells and subsequent analysis with complex and bulky instruments in specialized laboratories. To address this long-standing limitation in clinical cytometry, we introduce a microchip-based technique that can directly measure surface expression of target cells in hematological samples. Our microchip isolates an immunomagnetically-labeled target cell population from the contaminating background in whole blood and then utilizes the differential responses of target cells to on-chip magnetic manipulation to estimate their antigen expression. Moreover, manipulating cells with chip-sized permanent magnets and performing quantitative measurements via an on-chip electrical sensor network allows the assay to be performed in a portable platform with no reliance on laboratory infrastructure. Using our technique, we could successfully measure expressions of the CD45 antigen that is commonly expressed by white blood cells, as well as CD34 that is expressed by scarce hematopoietic progenitor cells, which constitutes only ∼0.0001% of all blood cells, directly from whole blood. With our technology, flow cytometry can potentially become a rapid bedside or at-home testing method that is available around the clock in environments where this invaluable assay with proven clinical utility is currently either outsourced or not even accessible.


Assuntos
Antígenos , Células-Tronco Hematopoéticas , Antígenos CD34/análise , Eletrônica , Citometria de Fluxo/métodos , Células-Tronco Hematopoéticas/química , Humanos
17.
Sci Rep ; 11(1): 20583, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663896

RESUMO

Reliable and routine isolation of circulating tumor cells (CTCs) from peripheral blood would allow effective monitoring of the disease and guide the development of personalized treatments. Negative enrichment of CTCs by depleting normal blood cells ensures against a biased selection of a subpopulation and allows the assay to be applied on different tumor types. Here, we report an additively manufactured microfluidic device that can negatively enrich viable CTCs from clinically-relevant volumes of unmanipulated whole blood samples. Our device depletes nucleated blood cells based on their surface antigens and the smaller anucleated cells based on their size. Enriched CTCs are made available off the device in suspension making our technique compatible with standard immunocytochemical, molecular and functional assays. Our device could achieve a ~ 2.34-log depletion by capturing > 99.5% of white blood cells from 10 mL of whole blood while recovering > 90% of spiked tumor cells. Furthermore, we demonstrated the capability of the device to isolate CTCs from blood samples collected from patients (n = 15) with prostate and pancreatic cancers in a pilot study. A universal CTC assay that can differentiate tumor cells from normal blood cells with the specificity of clinically established membrane antigens yet require no label has the potential to enable routine blood-based tumor biopsies at the point-of-care.


Assuntos
Células Neoplásicas Circulantes/metabolismo , Adulto , Idoso , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/métodos , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Leucócitos/citologia , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/patologia , Projetos Piloto , Impressão Tridimensional
18.
Sci Adv ; 7(40): eabf9833, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597143

RESUMO

Lateral flow assays (LFAs) use capillary flow of liquids for simple detection of analytes. While useful for spontaneously wicking samples, the capillary flow inherently limits performing complex reactions that require timely application of multiple solutions. Here, we introduce a technique to control capillary flow on paper by imprinting roadblocks on the flow path with water-insoluble ink and using the gradual formation of a void between a wetted paper and a sheath polymer tape to create timers. Timers are drawn at strategic nodes to hold the capillary flow for a desired period and thereby enable multiple liquids to be introduced into multistep chemical reactions following a programmed sequence. Using our technique, we developed (i) an LFA with built-in signal amplification to detect human chorionic gonadotropin with an order of magnitude higher sensitivity than the conventional assay and (ii) a device to extract DNA from bodily fluids without relying on laboratory instruments.

19.
Oxid Med Cell Longev ; 2021: 3154501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422207

RESUMO

Sick sinus syndrome (SSS) is a disease with bradycardia or arrhythmia. The pathological mechanism of SSS is mainly due to the abnormal conduction function of the sinoatrial node (SAN) caused by interstitial lesions or fibrosis of the SAN or surrounding tissues, SAN pacing dysfunction, and SAN impulse conduction accompanied by SAN fibrosis. Tongyang Huoxue Decoction (TYHX) is widely used in SSS treatment and amelioration of SAN fibrosis. It has a variety of active ingredients to regulate the redox balance and mitochondrial quality control. This study mainly discusses the mechanism of TYHX in ameliorating calcium homeostasis disorder and redox imbalance of sinoatrial node cells (SANCs) and clarifies the protective mechanism of TYHX on the activity of SANCs. The activity of SANCs was determined by CCK-8 and the TUNEL method. The levels of apoptosis, ROS, and calcium release were analyzed by flow cytometry and immunofluorescence. The mRNA and protein levels of calcium channel regulatory molecules and mitochondrial quality control-related molecules were detected by real-time quantitative PCR and Western Blot. The level of calcium release was detected by laser confocal. It was found that after H/R treatment, the viability of SANCs decreased significantly, the levels of apoptosis and ROS increased, and the cells showed calcium overload, redox imbalance, and mitochondrial dysfunction. After treatment with TYHX, the cell survival level was improved, calcium overload and oxidative stress were inhibited, and mitochondrial energy metabolism and mitochondrial function were restored. However, after the SANCs were treated with siRNA (si-ß-tubulin), the regulation of TYHX on calcium homeostasis and redox balance was counteracted. These results suggest that ß-tubulin interacts with the regulation of mitochondrial function and calcium release. TYHX may regulate mitochondrial quality control, maintain calcium homeostasis and redox balance, and protect SANCs through ß-tubulin. The regulation mechanism of TYHX on mitochondrial quality control may also become a new target for SSS treatment.


Assuntos
Cálcio/fisiologia , Medicamentos de Ervas Chinesas/farmacologia , Hipóxia/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Oxigênio/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Animais , Sinalização do Cálcio , Homeostase , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Coelhos , Nó Sinoatrial/metabolismo , Nó Sinoatrial/patologia
20.
Lab Chip ; 21(10): 1916-1928, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008660

RESUMO

Microfluidic technologies have long enabled the manipulation of flow-driven cells en masse under a variety of force fields with the goal of characterizing them or discriminating the pathogenic ones. On the other hand, a microfluidic platform is typically designed to function under optimized conditions, which rarely account for specimen heterogeneity and internal/external perturbations. In this work, we demonstrate a proof-of-principle adaptive microfluidic system that consists of an integrated network of distributed electrical sensors for on-chip tracking of cells and closed-loop feedback control that modulates chip parameters based on the sensor data. In our system, cell flow speed is measured at multiple locations throughout the device, the data is interpreted in real-time via deep learning-based algorithms, and a proportional-integral feedback controller updates a programmable pressure pump to maintain a desired cell flow speed. We validate the adaptive microfluidic system with both static and dynamic targets and also observe a fast convergence of the system under continuous external perturbations. With an ability to sustain optimal processing conditions in unsupervised settings, adaptive microfluidic systems would be less prone to artifacts and could eventually serve as reliable standardized biomedical tests at the point of care.


Assuntos
Aprendizado Profundo , Microfluídica , Algoritmos , Artefatos , Retroalimentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...