Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 128: 155518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552431

RESUMO

BACKGROUND: Gastrodia elata (Orchidaceae) is a medicinal plant used in traditional Chinese medicine. The rhizomes contain numerous active components, of which Gastrodin (p-hydroxymethylphenyl-B-D-glucopyranoside) forms the basis of the traditional medicine Gastrodiae Rhizoma. Gastrodin is also found in other medicinal plants and has neuroprotective, antioxidant, and anti-inflammatory effects. Neuroinflammation plays a crucial role in neurodegeneration. Research indicates that consuming meals and drinks containing Gastrodiaelata can enhance cognitive functioning and memory in elderly patients. The mechanisms relevant to the problem have not been completely understood. PURPOSE: The aim was to examine the in vivo and in vitro anti-neuroinflammatory effects of Gastrodin. STUDY DESIGN: The neuroprotective effects of Gastrodin on the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation in LPS-treated C57BL/6 mice and BV-2 cells were investigated. METHODS: 1. C57BL/6 mice were assigned to model, gastrodin, donepezil, and control groups (n = 10 per group). The Gastrodin group received 100 mg/kg/d for five days, and the Dopenezil group 1.3 mg/kg/d. A neuroinflammation model was established by administering intraperitoneal injections of 2 mg/kg LPS to all groups, excluding the control. To induce microglial activation in Gastrodin-treated mouse microglial BV-2 cells, 1 µg/ml LPS was introduced for 24 h Morris water mazes were utilized to evaluate learning and spatial memory. Expression and subcellular localization of TLR4/TRAF6/NF-κB axis-related proteins and p-Stat3, Iba-1, GFAP, iNOS, and CD206 were assessed by immunofluorescence, western blots, and ELISA. qRT-PCR was performed to determine and measure IL-1ß, TNF-α, cell migration, and phagocytosis. Overexpression of TRAF6 was induced by transfection, and the effect of Gastrodin on IL-1ß and p-NF-κB p65 levels was assessed. RESULTS: 1. In mice, gastrodin treatment mitigated LPS-induced deficits in learning and spatial memory, as well as reducing neuroinflammation in the hippocampus, expression of TLR4/TRAF6/NF-κB pathway proteins, activation of microglia and astrocytes, and phosphorylation of Stat3. 2. Gastrodin pretreatment improved LPS-induced inflammation in vitro, reducing expression of TLR4/TRAF6/NF-κB-associated proteins and p-Stat3, inducing microglial transformation from M1 to M2, and inhibiting migration and phagocytosis. Overexpression of TRAF6 inhibited the Gastrodin-induced effects. CONCLUSION: Gastrodin suppresses neuroinflammation and microglial activation by modifying the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation.


Assuntos
Doença de Alzheimer , Álcoois Benzílicos , Modelos Animais de Doenças , Glucosídeos , Camundongos Endogâmicos C57BL , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Fator 6 Associado a Receptor de TNF , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Álcoois Benzílicos/farmacologia , Glucosídeos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Doença de Alzheimer/tratamento farmacológico , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Masculino , Fármacos Neuroprotetores/farmacologia , Gastrodia/química , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos , Fator de Transcrição STAT3/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Linhagem Celular , Fosforilação/efeitos dos fármacos , Anti-Inflamatórios/farmacologia
2.
Eur J Pharmacol ; 938: 175385, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36379259

RESUMO

BACKGROUND: Depression is a common disorder with a complex pathogenesis. Tanshinone IIA (TAN IIA) is a botanical agent with neuroprotective and antidepressant properties. OBJECTIVE: To examine the effects of TAN IIA on chronic unpredictable mild stress (CUMS)-induced depression-like behavior and cognitive impairment in rats. METHODS: Rats were exposed to CUMS for 4 weeks, followed by the oral administration of TAN IIA, Deanxit (DEAN), or normal saline for an additional 4 weeks. The control rats were fed with regular chow and administered with normal saline for 4 weeks. Behavioral tests were performed to assess the effects of TAN IIA on depression-like behavior and cognitive impairment in rats with CUMS. The morphology of dendrites was analyzed by Golgi staining. Immunofluorescence staining was performed to determine protein localization. RESULTS: TAN IIA treatment ameliorated CUMS-induced depression-like behavior and cognitive impairment in rats. TAN IIA treatment also reversed the effects of CUMS on dendritic complexity and the levels of gamma-aminobutyric acid (GABA) in the hippocampus and prefrontal cortex. Rats with CUMS showed decreased levels of brain-derived neurotrophic factor (BDNF) and phosphorylated tropomyosin receptor kinase B (TrkB), upregulated expression of GABA transporter 1 (GAT1), and reduced expression of synaptic proteins in the hippocampus, while TAN IIA treatment significantly diminished the effects of CUMS exposure. In addition, GAT1 was colocalized with N-methyl-D-aspartate receptor 2B. CONCLUSION: TAN IIA ameliorates CUMS-induced depression-like behavior and cognitive impairment in rats by regulating the BDNF/TrkB/GAT1 signaling pathway, suggesting that TAN IIA may be a candidate drug for the treatment of depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Animais , Ratos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Modelos Animais de Doenças , Hipocampo , Transdução de Sinais , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
3.
Curr Med Sci ; 39(2): 196-203, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31016510

RESUMO

With the intensification of the aging process of the world, Alzheimer's disease (AD), which is the main type of senile dementia, has become a primary problem in the present society. Lots of strategies have been used to prevent and treat AD in animal models and clinical trials, but most of them ended in failure. Panax notoginseng saponins (PNS) contain a variety of monomer compositions which have been separated and identified. Among of the monomer compositions, notoginseng saponin Rg1 (Rg1) accounts for 20% of the cultivation of panax notoginseng roots. And now PNS have been reported to be widely used to treat cardio-cerebrovascular diseases and have neuroprotective effects to restrain the ß-amyloid peptide (Aß)25-35-mediated apoptosis. Moreover, it is reported that PNS could accelerate the growth of nerve cells, increase the length of axons and promote synaptic plasticity. Whether Rg1 can ameliorate the cognitive impairment and the underlying mechanism has not been elucidated. To study the preventive effect of Rg1 on cognitive impairment and the possible mechanism, we established the cognitive impairment model in rats through Aß1-42 (2.6 µg/µL, 5 µL) injection and then treated the rats with Rg1 (25, 50 and 100 mg/kg) administered intragastrically for 4 weeks. We observed that Aß1-42 could induce spatial learning and memory deficits in rats. Simultaneously, Aß1-42 injection also resulted in the reduced neuron number in cornuammonis 1 (CA1) and dentate gyrus (DG) of hippocampus, as well as the increased level of hyperphosphorylated ß-amyloid precursor protein (APP) at Thr668 site with up-regulation of ß-APP cleaving enzyme 1 (BACE1) and presenilin 1 (PS1) and down-regulation of a disintegrin and metalloprotease domain-containing protein 10 (ADAM10) and insulin-degrading enzyme (IDE). Administration of Rg1 effectively rescued the cognitive impairment and neuronal loss, and inhibited the ß-secretase processing of APP through reducing APP-Thr668 phosphorylation and BACE1/PS1 expression, and increasing the expression of ADAM10 and IDE. We concluded that Rg1 might have neuroprotective effects and could promote learning and memory ability, which might be a viable candidate in AD therapy probably through reducing the generation of Aß and increasing the degradation of Aß.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva/prevenção & controle , Panax notoginseng/química , Fragmentos de Peptídeos/metabolismo , Saponinas/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Disfunção Cognitiva/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Presenilina-1/metabolismo , Ratos , Ratos Sprague-Dawley
4.
J Geriatr Psychiatry Neurol ; 32(3): 152-163, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30885037

RESUMO

BACKGROUND: Alzheimer disease (AD) is the most common type of dementia which is becoming a primary problem in the present society, but it lacks effective treatment methods and means of AD. Tanshinone IIA (Tan IIA) has been reported to have neuroprotective effects to restrain the Aß25-35-mediated apoptosis. However, few studies try to understand how Aß1-42 affects hyperphosphorylation of tau and how Tan IIA regulates this process at the molecular level. METHODS: Fifty male Sprague-Dawley rats were randomly divided into 5 groups and infused through the lateral ventricle with Aß1-42 except the control group. Then the rats were treated with Tan IIA through intragastric administration for 4 weeks. After the ability of learning and memory being measured, histomorphological examination and Western blot were used to detect the possible mechanism in the AD-associated model rats. RESULTS: We observed that Aß1-42 infusion could induce spatial learning and memory deficits in rats. Simultaneously, Aß1-42 also could reduce the neuron in cornu ammonis 1 and dentate gyrus of hippocampus, as well as increase the levels of cleaved caspase 3, hyperphosphorylated tau at the sites Ser396, Ser404, and Thr205 with enhancing staining of black granules in brain. We also found that Aß1-42 could increase the activity of extracellular signal-regulated protein kinase (ERK) and glycogen synthase kinase-3ß (GSK-3ß). Meanwhile, these phenomena could be ameliorated when Tan IIA was used. CONCLUSION: We concluded that Tan IIA might have neuroprotective effect and improving learning and memory ability to be a viable candidate in AD therapy with mechanisms involving the ERK and GSK-3ß signal pathway.


Assuntos
Abietanos/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Aprendizagem Espacial/efeitos dos fármacos , Abietanos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...