Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 264, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563652

RESUMO

ZIF-8 may experience ion-responsive degradation in ionic solutions, which will change its initial architecture and restrict its direct biological use. Herein, we report an abnormal phenomenon in which ZIF-8 induces large hydroxyapatite-like crystals when soaked directly in simulated body fluid. These crystals grew rapidly continuously for two weeks, with the volume increasing by over 10 folds. According to Zn2+ release and novel XRD diffraction peak presence, ZIF-8 particles can probably show gradual collapse and became congregate through re-nucleation and competitive coordination. The phenomenon could be found on ZIF-8/PCL composite surface and printed ZIF-8/PCL scaffold surface. ZIF-8 enhanced PCL roughness through changing the surface topography, while obviously improving the in-vivo and in-vitro osteoinductivity and biocompatibility. The pro-biomineralization property can make ZIF-8 also applicable in polylactic acid-based biomaterials. In summary, this study demonstrates that ZIF-8 may play the role of a bioactive additive enabling the surface modification of synthetic polymers, indicating that it can be applied in in-situ bone regeneration.


Assuntos
Durapatita , Alicerces Teciduais , Durapatita/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Osteogênese , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual
2.
Pestic Biochem Physiol ; 188: 105283, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464338

RESUMO

Cotton bollworm (Helicoverpa armigera) is an economically important pest, which is difficult to manage due to its biological and ecological traits, and resistance to most insecticides. Alternative compounds for the sustainable management of H. armigera are needed. As a fungal metabolite, Cyclosporin A (CsA) has not been applied in agriculture pests. Here, CsA was evaluated as a propective insecticide for H. armigera. The results showed that CsA displayed high insecticidal activity against both Cry1Ac-susceptible and -resistant populations of H. armigera. Moreover, lower concentrations of CsA had clear effects, including significantly reduced pupal weight, pupation rate, emergence rate, ovary size, female fecundity and egg hatchability. Further study confirmed that CsA suppressed calcineurin activity and the subsequent expression of endogenous antimicrobial peptide genes (APMs), leading to impaired immunity, ultimately resulting in delayed development and increased mortality. Thus, CsA treatment could control the cotton bollworm population and even showed efficacy against those with Bt resistance. In addition, the morphological changes observed in insects fed CsA with lower concentrations provide insight into insect immunity, regulation of growth and development, regulation of body color, ovary development and sexual selection under external pressure. Overall, our study provides information on biological control potential of Cry1Ac-susceptible and -resistant populations of H. armigera to develop novel bioinsecticides.


Assuntos
Inseticidas , Mariposas , Feminino , Animais , Inseticidas/farmacologia , Ciclosporina/farmacologia , Pupa , Gossypium
3.
Front Bioeng Biotechnol ; 10: 1023729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466326

RESUMO

The brown planthopper (BPH; Nilaparvata lugens) is an important pest in rice cultivation, and chemical pesticide over-use and ineffectiveness of existing Bt transgenic rice against piercing-sucking insects make novel control methods necessary. RNA interference (RNAi) biopesticide is a new type of product with high efficiency and specificity and are simple to use. The Notch signaling pathway has extensive and important physiological functions and plays a key role in the development of insects. In this study, two key ligand genes of the Notch signaling pathway, delta (dl) and jagged (jag), were selected and their lethal effects and functional analysis were systematically evaluated using a stable short-winged population (Brachypterous strain) and a long-winged population (Macropterous strain) of BPHs. The full-length coding sequences of Nldl and Nljag comprised 1,863 and 3,837 base pairs, encoding 620 and 1,278 amino acids, respectively. The nucleic acid sequences of Nldl and Nljag were identical between the two strains. The expression levels of Nldl and Nljag were relatively high in the head of the nymphs, followed by those in the abdomen. Through RNAi treatment, we found that injection of BPH nymphs of both strains with dsNldl (10-50 ng/nymph) or dsNljag (100 ng/nymph) produced lethal or teratogenic effects. dsRNA treatment showed excellent inhibitory effects on the expression of target genes on days 1 and 5, suggesting that RNAi rapidly exhibits effects which persist for long periods of time in BPHs. Taken together, our results confirm the potential of Nldl and Nljag as target genes of RNAi biopesticides, and we propose optimized dosages for the control of BPHs.

4.
Stem Cells Int ; 2022: 2799844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117725

RESUMO

Background: Mesenchymal stromal cells (MSCs) and their secreted extracellular vesicles (MSC-EVs) possess similar proregenerative effects when injected into defects immediately following trauma. However, MSC-EVs are superior to MSCs in terms of storage and rejection reflection, while immediate administration of MSC-EVs is related to several target cells for most donor cells die within few weeks. Besides, the inflammatory cascade is incited, providing an unfavorable environment for target cells. We hypothesized that delayed injection of MSC-EVs might have priority on tissue regeneration than instant injection. Method: Extracellular vesicles isolated from adipose-derived mesenchymal stromal cells (ADSC-EVs) were administered into human umbilical vein endothelial cells (HUVECs) in vitro at different doses. The migration of HUVECs was assessed using the scratch wound healing assay, whereas the length of tubes and number of vessel-like structures formed by HUVECs were determined using tube formation assay. Next, 24 BALB/c nude mice were randomly divided into three groups (n = 8). For the EV-delayed group, ADSC-EVs were injected into transplanted fat a week later than the EV-immediate group. The volume and weight of grafts were measured at 3 months after fat transplantation. Further, the number of CD31-possitive vessels and CD206-possitive cells in the fat grafts was quantified. Results: Compared with the EV-immediate group, the EV-delayed group had a higher fat tissue retention volume (0.11 ± 0.02 mL versus 0.08 ± 0.01 mL), more neovessels (31.00 ± 4.60 versus 24.20 ± 3.97), and fewer cysts. Furthermore, there were more Ki67-positive cells (25.40 ± 7.14 versus 16.20 ± 4.17) and CD206-positive M2 macrophages cells (23.60 ± 3.44 versus 14.00 ± 3.85) in the EV-delayed group than in the EV-immediate group. Conclusion: Delayed injection of ADSC-EVs promotes fat graft volume retention by stimulating angiogenesis. These findings suggest that delayed supplementation might be a more effective strategy for the application of MSC-EVs in tissue regeneration.

5.
Mater Today Bio ; 15: 100307, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706502

RESUMO

Biomineralization of natural polymers in simulated body fluid (SBF) can significantly improve its biocompatibility, osteoconductivity, and osteoinductivity because of the hydroxyapatite (HAp) deposition. Nevertheless, the superficial HAp crystal deposition hamper the deep inorganic ions exchange in porous microgels, thus gradually leading to a nonuniform regeneration effect. Inspired by the pearl forming process, this article uses the microarray chips to fabricate the multi-layer mineralized graphene oxide (GO)-collagen (Col)-hydroxyapatite (HAp) microgel, denoted as MMGCH. These fabricated MMGCH microgels exhibit porous structure and uniform HAp distribution. Furthermore, the suitable microenvironment offered by microgel promotes the time-dependent proliferation and osteogenic differentiation of stem cells, which resulted in upregulated osteogenesis-related genes and proteins, such as alkaline phosphatase, osteocalcin, and collagen-1. Finally, the MMGCH microgels possess favorable bone regeneration capacities both in cranial bone defects and mandibular bone defects via providing a suitable microenvironment for host-derived cells to form new bone tissues. This work presents a biomimetic means aiming to achieve full-thickness and uniform HAp deposition in hydrogel for bone defect repair.

6.
Int J Nanomedicine ; 16: 3803-3818, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113101

RESUMO

BACKGROUND: Effective repair of full-thickness abdominal wall defects requires a patch with sufficient mechanical strength and anti-adhesion characteristics to avoid the formation of hernias and intra-abdominal complications such as intestinal obstruction and fistula. However, patches made from polymers or bio-derived materials may not meet these requirements and lack the bionic characteristics of the abdominal wall. MATERIALS AND METHODS: In this study, we report a consecutive electrospun method for preparing a double-layer structured nanofiber membrane (GO-PCL/CS-PCL) using polycaprolactone (PCL), graphene oxide (GO) and chitosan (CS). To expand the bio-functions (angiogenesis/reducing reactive oxygen species) of the patch (GO-PCL/NAC-CS-PCL), N-acetylcysteine (NAC) was loaded for the repair of full-thickness abdominal wall defects (2×1.5cm) in rat model. RESULTS: The double-layered patch (GO-PCL/NAC-CS-PCL) showed excellent mechanical strength and biocompatibility. After 2 months, rats treated with the patch exhibited the desired repair effect with no hernia formation, less adhesion (adhesion score: 1.50±0.50, P<0.001) and more collagen deposition (percentage of collagen deposition: 34.94%±3.31%, P<0.001). CONCLUSION: The double-layered nanomembranes presented in this study have good anti-hernia and anti-adhesion effects, as well as improve the microenvironment in vivo. It, therefore, holds good prospects for the repair of abdominal wall defects and provides a promising key as a postoperative anti-adhesion agent.


Assuntos
Parede Abdominal/anormalidades , Quitosana/química , Grafite/química , Hérnia/tratamento farmacológico , Nanofibras/administração & dosagem , Poliésteres/administração & dosagem , Aderências Teciduais/tratamento farmacológico , Animais , Colágeno/química , Hérnia/etiologia , Hérnia/patologia , Masculino , Nanofibras/química , Poliésteres/química , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/etiologia , Aderências Teciduais/patologia
7.
Front Microbiol ; 12: 634619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643268

RESUMO

Insect resistance to Bacillus thuringiensis (Bt) insecticidal proteins has rapidly evolved with the expansion of the planting area of transgenic Bt crops. Pyramiding RNA interference (RNAi) and Bt in crops is urgently needed to counter the rapid increase in pest resistance. The ideal "pyramid" strategy simultaneously targets different action pathways that exert synergetic effects on each other. Here, we identified a dephosphatase, namely, Helicoverpa armigera calcineurin (HaCAN), which might enhance the insecticidal activity of Cry1Ac against Helicoverpa armigera by regulating immune gene expression via dephosphatase activity, but not by acting as a receptor. Notably, blocking enzyme activity or knocking down endogenous HaCAN significantly promoted the enhancement in Cry1Ac toxicity to insect larvae and cells. Correspondingly, the increase in HaCAN activity reduced the cytotoxicity of Cry1Ac as shown by the heterologous expression of HaCAN. Our results provide a probable that HaCAN is an important candidate gene for pyramiding RNAi and Cry1Ac crops to control cotton bollworm.

8.
Pest Manag Sci ; 77(4): 2142-2150, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33336541

RESUMO

BACKGROUND: Extensive planting of transgenetic Bacillus thuringiensis crops has driven the evolution of pest resistance to Cry1Ac. Adjustment of cropping structures has promoted further outbreak of Helicoverpa armigera in China. To control this pest, a combination of pyramiding RNA interference (RNAi) and Cry2Ab is considered a promising strategy for countering cross-resistance and enhancing the toxicity of Cry2Ab to cotton bollworm. We explored the possibility of using calcineurin (CAN) as a target RNAi gene, because it is involved in cotton bollworm responses to the toxicity of Cry2Ab. RESULTS: Cry2Ab treatment led to a significant increase in HaCAN mRNA level and HaCAN activity. Suppression of HaCAN activity due to RNAi-mediated knockdown of HaCAN increased the susceptibility of midgut cells to Cry2Ab. The increase in HaCAN activity shown by heterologous expression of HaCAN reduced the cytotoxicity of Cry2Ab to Sf9 cells. Moreover, ingestion of HaCAN-specific inhibitor FK506 increased the toxicity of Cry2Ab in larvae. Interestingly, HaCAN does not function as a Cry2Ab direct binding protein that participates in Cry2Ab toxicity. CONCLUSIONS: The results in this study provide evidence that suppression of HaCAN not only affected the development of the cotton bollworm, but also enhanced the toxicity of Cry2Ab to the pest. HaCAN is therefore an important candidate gene in cotton bollworm that can be targeted for pest control when the pest infests RNAi+Cry2Ab crops. Meanwhile, the mechanism of action of HaCAN in Cry2Ab toxicity suggested that protein dephosphorylation was involved. © 2020 Society of Chemical Industry.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Calcineurina/genética , China , Endotoxinas/genética , Endotoxinas/farmacologia , Gossypium , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva/genética , Mariposas/genética , Plantas Geneticamente Modificadas
9.
Artigo em Inglês | MEDLINE | ID: mdl-32974316

RESUMO

OBJECTIVE: Precise hip cup positioning is essential for the prevention of component impingement and dislocation in robotic assisted total hip arthroplasty (THA). Currently, the robotic system uses a mechanical alignment guide (MAG) for cup placement, which is one-size-fits-all, and the optimal cup positioning is controversial. Robotic assisted THA has not used any personalized cup positioning guides. The goal of this study was to identify an optimal guide for cup placement in robotic assisted THA to improve prognosis and life quality after THA. MATERIALS AND METHODS: Pelvis and femoral CT data of 47 participants were retrospectively collected for preoperative planning of robotic THA. The universal MAG guide and three personalized guides, including acetabular rim labrum guide (ARLG), transverse acetabular ligament guide (TALG), and ischiatic-pubis line guide (IPLG), were used to pose cups in the acetabulum of each participant. The position of cups was evaluated by inclination and anteversion; the function of hip joints was evaluated by hip ranges of motion, including abduction, adduction, extension, flexion, internal rotation, and external rotation. RESULTS: In terms of cup positioning, ARLG provided a bigger cup inclination (p < 0.0001), while IPLG and TALG provided smaller cup inclination (p < 0.001) than MAG; the three personalized guides provided larger cup anteversion (p < 0.0001) than MAG. In terms of HROMs, compared with the use of MAG, the use of three personalized guides significantly decreased abduction (p < 0.0001), extension (p < 0.0001), and external rotation (p < 0.0001), but increased significantly flexion (p < 0.0001) and internal rotation (p < 0.0001); the use of ARLG significantly reduced adduction (p < 0.0001), but the use of IPLG and TALG increased adduction (p < 0.0001). CONCLUSION: Compared with MAG, personalized guides provided greater flexion and internal rotation, which may reduce the risk of posterior dislocation. Among the three personalized guides, IPLG is the most reliable one for the preoperative planning of robotic assisted THA.

10.
Bioact Mater ; 5(4): 859-870, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32637749

RESUMO

Graphene Oxide (GO)-related hydrogels have been extensively studied in hard tissue repair, because GO can not only enhance the mechanical properties of polymers but also promote osteogenic differentiation of mesenchymal stem cells. However, simple GO-related hydrogels are not ideal for the repair of osteoporotic bone defects as the overactive osteoclasts in osteoporosis. Alendronate (Aln) is known to inhibit osteoclasts and may bind to GO through covalent connection. Therefore, delivering Aln in GO-related hydrogels may be effective to repair osteoporotic bone defects. Here, we developed a control-released system which is constructed by collagen (Col)-GO sponges loaded with Aln (Col-GO-Aln) for osteoporotic bone defect repair. In vitro, Col-GO-Aln sponges prolonged the release period of Aln, and the sponge containing 0.05% (w/v) GO released Aln faster than sponge with 0.2% GO. Furthermore, tartrate-resistant acid phosphatase (TRAP) and F-actin staining demonstrated that Col-GO-Aln sponges effectively inhibited osteoclastogenesis of monocyte-macrophages. In vivo, micro-CT scan showed that the volume of newborn bone in defect site by 0.05% GO sponge was nearly three times larger than that of other groups. Moreover, the CT and histological examinations of rat femur proved that Col-GO-Aln sponges decreased the number of osteoclasts and suppressed the systemic bone loss in osteoporotic rats. These findings reveal that the application of GO as carriers of anti-osteoporosis drugs is a viable treatment for osteoporosis. The results also underscore the potential of GO-related hydrogels with Aln-releasing capacity for bone regeneration in osteoporosis.

11.
Theranostics ; 10(6): 2759-2772, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194833

RESUMO

The survival of transplanted cells and tissues in bone regeneration requires a microenvironment with a vibrant vascular network. A tissue engineering chamber can provide this in vivo. However, the commonly used silicone chamber is biologically inert and can cause rejection reactions and fibrous capsule. Studies have revealed that collagen is highly biocompatible and graphene oxide (GO) could regulate osteogenic activity in vivo. Besides, GO can be cross-linked with natural biodegradable polymers to construct scaffolds. Methods: A vascularized GO-collagen chamber model was built by placing vessels traversing through the embedded tissue-engineered grafts (osteogenic-induced bone mesenchymal stem cells -gelatin) in the rat groin area. Osteogenic activity and inflammatory reactions were assessed using different methods including micro-CT scanning, Alizarin red staining, and immunohistochemical staining. Results: After one month, in vivo results showed that bone mineralization and inflammatory responses were significantly pronounced in the silicone model or no chamber (control) groups. Vascular perfusion analysis confirmed that the GO-collagen chamber improved the angiogenic processes. Cells labeled with EdU revealed that the GO-collagen chamber promoted the survival and osteogenic differentiation of bone mesenchymal stem cells. Conclusion: Overall, the novel biocompatible GO-collagen chamber exhibited osteoinductive and anti-fibrosis effects which improved bone regeneration in vivo. It can, therefore, be applied to other fields of regenerative medicine.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea/efeitos dos fármacos , Colágeno , Grafite , Engenharia Tecidual , Alicerces Teciduais , Animais , Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Colágeno/uso terapêutico , Feminino , Grafite/uso terapêutico , Células-Tronco Mesenquimais , Ratos , Ratos Sprague-Dawley
12.
Front Cell Dev Biol ; 8: 606289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409280

RESUMO

Steroid-induced osteonecrosis of femoral head (SONFH) is a common and serious complication caused by long-term and/or excessive use of glucocorticoids (GCs). The decreased activity and abnormal differentiation of bone marrow mesenchymal stem cells (BMSCs) are considered to be one of the major reasons for the onset and progression of this disease. Periostin (POSTN) is a matricellular protein which plays an important role in regulating osteoblast function and bone formation. Sclerostin (SOST) is a secreted antagonist of Wnt signaling that is mainly expressed in osteocytes to inhibit bone formation. However, the exact role of POSTN and SOST in SONFH has not been reported yet. Therefore, we detected the differential expression of POSTN and SOST in BMSCs of SONFH Group patients, and Control Group was patients with traumatic ONFH (TONFH) and developmental dysplasia of the hip (DDH). Furthermore, we used lentiviral transfection to knockdown POSTN expression in BMSCs of patients with SONFH to study the effect of POSTN knockdown on the SOST expression and osteogenic differentiation of BMSCs. The results indicated that the endogenous expression of POSTN and SOST in BMSCs of SONFH Group was upregulated, compared with Control Group. POSTN was upregulated gradually while SOST was downregulated gradually at days 0, 3, and 7 of osteogenic differentiation of BMSCs in Control Group. Contrarily, POSTN was gradually downregulated while SOST was gradually upregulated during osteogenic differentiation of BMSCs in SONFH Group. This could be due to increased expression of SOST in BMSCs, which was caused by excessive GCs. In turn, the increased expression of POSTN in BMSCs may play a role in antagonizing the continuous rising of SOST during the osteogenic differentiation of BMSCs in patients with SONFH. POSTN knockdown significantly attenuated osteo-specific gene expression, alkaline phosphatase activity, and calcium nodule formation in vitro; thus inhibiting the osteogenic differentiation of BMSCs in patients with SONFH. Besides, POSTN knockdown upregulated SOST expression, increased GSK-3ß activity, and downregulated ß-catenin. These findings suggest that POSTN have an essential role in regulating the expression of SOST and osteogenic differentiation of BMSCs in patients with SONFH, and POSTN knockdown suppresses osteogenic differentiation by upregulating SOST and partially inactivating Wnt/ß-catenin signaling pathway. Therefore, targeting POSTN and SOST may serve as a promising therapeutic target for the prevention and treatment of SONFH.

13.
Theranostics ; 9(20): 5839-5853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534523

RESUMO

Wound dressings composed of natural polymers, such as type I collagen, possess good biocompatibility, water holding capacity, air permeability, and degradability, and can be used in wound repair. However, due to the persistent oxidative stress in the wound area, the migration and proliferation of fibroblasts might be suppressed, leading to poor healing. Thus, collagen-containing scaffolds are not suitable for accelerated wound healing. Antioxidant N-acetyl cysteine (NAC) is known to reduce the reactive oxygen species (ROS) and has been widely used in the clinic. Theoretically, the carboxyl group of NAC allows loading of graphene oxide (GO) for sustained release and may also enhance the mechanical properties of the collagen scaffold, making it a better wound-dressing material. Herein, we demonstrated an innovative approach for a potential skin-regenerating hybrid membrane using GO incorporated with collagen I and NAC (N-Col-GO) capable of continuously releasing antioxidant NAC. Methods: The mechanical stability, water holding capacity, and biocompatibility of the N-Col-GO hybrid membrane were measured in vitro. A 20 mm rat full-skin defect model was created to evaluate the repair efficiency of the N-Col-GO hybrid membrane. The vascularization and scar-related genes in the wound area were also examined. Results: Compared to the Col only scaffold, N-Col-GO hybrid membrane exhibited a better mechanical property, stronger water retention capacity, and slower NAC release ability, which likely promote fibroblast migration and proliferation. Treatment with the N-Col-GO hybrid membrane in the rat wound model showed complete healing 14 days after application which was 22% faster than the control group. HE and Masson staining confirmed faster collagen deposition and better epithelization, while CD31 staining revealed a noticeable increase of vascularization. Furthermore, Rt-PCR demonstrated decreased mRNA expression of profibrotic and overexpression of anti-fibrotic factors indicative of the anti-scar effect. Conclusion: These findings suggest that N-Col-GO drug release hybrid membrane serves as a better platform for scarless skin regeneration.


Assuntos
Acetilcisteína/química , Colágeno/química , Grafite/química , Acetilcisteína/uso terapêutico , Animais , Movimento Celular/efeitos dos fármacos , Módulo de Elasticidade , Masculino , Camundongos , Microscopia Eletrônica de Varredura , Células NIH 3T3 , Porosidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Difração de Raios X
14.
Mater Sci Eng C Mater Biol Appl ; 105: 110137, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546424

RESUMO

The developing bone graft substitutes have become a promising strategy for repairing large bone loss. Aerogels that made from natural polymers were widely investigated for synthetic bone graft due to their high porosity and great biocompatibility. However, the mechanical properties of natural polymer aerogel are extremely poor for large bone repair. Graphene oxide (GO) is one of the nanomaterials with great mechanical properties as well as biocompatibility, making it a promising component when constructing hybrid aerogels for bone regeneration. In the present study, we have developed a highly porous aerogel consist of GO and type I collagen (COL) using sol-gel process (concentrations of GO: 0%, 0.05%, 0.1%, and 0.2% w/v). Results indicated that GO-COL aerogels were highly porous and hydrophilic. Furthermore, the compressive modulus of GO-COL aerogels was enhanced with the GO concentration increased. For in vitro experiment, 0.1% GO-COL aerogel exhibited better biomineralization rate and cell compatibility than other groups of aerogels. For in vivo study, a better bone repair effect was observed in 0.1% GO-COL aerogels than COL aerogel in rat cranial defect models. This study indicated that 0.1% GO-COL aerogel exhibited good biocompatibility and osteogenic ability in vivo, which make it a promising biocompatible scaffold for bone regeneration and tissue engineering.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Colágeno/farmacologia , Géis/química , Grafite/farmacologia , Animais , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Ratos Wistar , Tela Subcutânea/efeitos dos fármacos , Microtomografia por Raio-X
15.
Theranostics ; 9(16): 4663-4677, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31367248

RESUMO

Background: Microtissues constructed with hydrogels promote cell expansion and specific differentiation by mimicking the microarchitecture of native tissues. However, the suboptimal mechanical property and osteogenic activity of microtissues fabricated by natural polymers need further improvement for bone reconstruction application. Core-shell designed structures are composed of an inner core part and an outer part shell, combining the characteristics of different materials, which improve the mechanical property of microtissues. Methods: A micro-stencil array chip was used to fabricate an open porous core-shell micro-scaffold consisting of gelatin as shell and demineralized bone matrix particles modified with bone morphogenetic protein-2 (BMP-2) as core. Single gelatin micro-scaffold was fabricated as a control. Rat bone marrow mesenchymal stem cells (BMSCs) were seeded on the micro-scaffolds, after which they were dynamic cultured and osteo-induced in mini-capsule bioreactors to fabricate microtissues. The physical characteristics, biocompatibility, osteo-inducing and controlled release ability of the core-shell microtissue were evaluated in vitro respectively. Then microtissues were tested in vivo via ectopic implantation and orthotopic bone implantation in rat model. Results: The Young's modulus of core-shell micro-scaffold was nearly triple that of gelatin micro-scaffold, which means the core-shell micro-scaffolds have better mechanical property. BMSCs rapidly proliferated and retained the highest viability on core-shell microtissues. The improved osteogenic potential of core-shell microtissues was evidenced by the increased calcification based on von kossa staining and osteo-relative gene expression. At 3months after transplantation, core-shell microtissue group formed the highest number of mineralized tissues in rat ectopic subcutaneous model, and displayed the largest amount of new bony tissue deposition in rat orthotopic cranial defect. Conclusion: The novel core-shell microtissue construction strategy developed may become a promising cell delivery platform for bone regeneration.


Assuntos
Osso e Ossos/química , Animais , Fenômenos Biomecânicos , Biomimética , Proteína Morfogenética Óssea 2/metabolismo , Osso e Ossos/metabolismo , Gelatina/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Porosidade , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual
16.
BMC Musculoskelet Disord ; 20(1): 203, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077180

RESUMO

BACKGROUND: Total hip arthroplasty (THA) is considerably difficult to perform in patients with Crowe type IV developmental dysplasia of the hip (DDH). Some Crowe type IV DDH patients require a femoral subtrochanteric shortening osteotomy to equalize the length of the lower extremities and decrease the difficulty of intraoperative reduction. Subtrochanteric transverse osteotomy has been proven to have superior clinical efficacy, but some cases of nonunion occur. CASE PRESENTATION: We present the case of a 62-year-old male patient who underwent right THA with femoral subtrochanteric transverse osteotomy due to Crowe type IV DDH. Nonunion of the osteotomy occurred during the follow-up period. In July 2017, the patient underwent right THA and femoral subtrochanteric transverse osteotomy due to Crowe type IV DDH. In November 2017, a slight feeling of bone rubbing and slight pain in the hip were reported. The ends of the osteotomy had rotated and united poorly. However, the patient requested to undergo continued observation. In December 2017, the patient reported an obvious sensation of bone rubbing and aggravated hip pain. The ends of the osteotomy had rotated and continued to exhibit nonunion. On December 26, 2017, the patient was treated with plate and screw internal fixation with bone morphogenetic protein (BMP) following our suggestion. In August 2018, the ends of the osteotomy had united after internal fixation was applied. CONCLUSIONS: THA with femoral subtrochanteric transverse osteotomy exhibits good efficacy for the treatment of patients with Crowe type IV DDH. However, postoperative nonunion occurs in a small number of cases. The causes of nonunion should be analysed, and effective measures should be taken to prevent this situation. Plate and screw internal fixation with BMP is an effective treatment for nonunion of the ends of an osteotomy.


Assuntos
Artroplastia de Quadril/efeitos adversos , Fêmur/cirurgia , Luxação Congênita de Quadril/cirurgia , Osteotomia/efeitos adversos , Complicações Pós-Operatórias/etiologia , Artroplastia de Quadril/métodos , Humanos , Fixadores Internos , Masculino , Pessoa de Meia-Idade , Osteotomia/métodos , Complicações Pós-Operatórias/cirurgia
17.
ACS Appl Mater Interfaces ; 10(50): 44080-44091, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30475576

RESUMO

Biomimetic mineralization using simulated body fluid (SBF) can form a bonelike apatite (Ap) on the natural polymers and enhance osteoconductivity and biocompatibility, and reduce immunological rejection. Nevertheless, the coating efficiency of the bonelike apatite layer on natural polymers still needs to be improved. Graphene oxide (GO) is rich in functional groups, such as carbonyls (-COOH) and hydroxyls (-OH), which can provide more active sites for biomimetic mineralization and improve the proliferation of the rat bone marrow stromal cells (r-BMSCs). In this study, we introduced 0%, 0.05%, 0.1%, and 0.2% w/v concentrations of GO into collagen (Col) scaffolds and immersed the fabricated scaffolds into SBF for 1, 7, and 14 days. In vitro environment scanning electron microscopy (ESEM), energy-dispersive spectrometry (EDS), thermogravimetric analysis (TGA), micro-CT, calcium quantitative analysis, and cellular analysis were used to evaluate the formation of bonelike apatite on the scaffolds. In vivo implantation of the scaffolds into the rat cranial defect was used to analyze the bone regeneration ability. The resulting GO-Col-Ap scaffolds exhibited a porous and interconnected structure coated with a homogeneous distribution of bonelike apatite on their surfaces. The Ca/P ratio of 0.1% GO-Col-Ap group was equal to that of natural bone tissue on the basis of EDS analysis. More apatites were observed in the 0.1% GO-Col-Ap group through TGA analysis, micro-CT evaluation, and calcium quantitative analysis. Furthermore, the 0.1% GO-Col-Ap group showed significantly higher r-BMSCs adhesion and proliferation in vitro and more than 2-fold higher bone formation than the Col-Ap group in vivo. Our study provides a new approach of introducing graphene oxide into bone tissue engineering scaffolds to enhance biomimetic mineralization.


Assuntos
Materiais Biomiméticos , Regeneração Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Colágeno , Grafite , Crânio , Alicerces Teciduais/química , Animais , Apatitas/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Colágeno/química , Colágeno/farmacologia , Grafite/química , Grafite/farmacologia , Ratos , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem , Crânio/lesões , Crânio/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Microtomografia por Raio-X
18.
ACS Appl Mater Interfaces ; 10(49): 42948-42958, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421913

RESUMO

Hydrogels such as type I collagen (COL) have been widely studied in bone tissue repair, whereas their weak mechanical strength has limited their clinical application. By adding graphene oxide (GO) nanosheets, researchers have successfully improved the mechanical properties and biocompatibility of the hydrogels. However, for large bone defects, the osteoinductive and cell adhesion ability of the GO hybrid hydrogels need to be improved. Mesenchymal stem cell (MSC) secreted extracellular matrix (ECM), which is an intricate network, could provide a biomimetic microenvironment and functional molecules that enhance the cell proliferation and survival rate. To synergize the advantages of MSC-ECM with GO-COL hybrid implants, we developed a novel ECM scaffold construction method. First, an osteoinductive extracellular matrix (OiECM) was created by culturing osteodifferentiated bone marrow mesenchymal stem cells (BMSCs) for 21 days. Then, the GO-COL scaffold was fully wrapped with the OiECM to construct the OiECM-GO-COL composite for implantation. The morphology, physical properties, biocompatibility, and osteogenic performance of the OiECM-GO-COL implants were assessed in vitro and in vivo (5 mm rat cranial defect model). Both gene expression and cell level assessments suggested that the BMSCs cultured on OiECM-GO-COL implants had a higher proliferation rate and osteogenic ability compared to the COL or GO-COL groups. In vivo results showed that the OiECM-GO-COL implants achieved better repair effects in a rat critical cranial defect model, whereas bone formation in other groups was limited. This study provides a promising strategy, which greatly improves the osteogenic ability and biocompatibility of the GO hydrogels without the procedure of seeding and culturing MSCs on scaffolds in vitro, demonstrating its potential as an off-the-shelf method for bone tissue engineering.


Assuntos
Materiais Biomiméticos , Regeneração Óssea/efeitos dos fármacos , Matriz Extracelular/química , Grafite , Osteogênese/efeitos dos fármacos , Crânio , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Feminino , Grafite/química , Grafite/farmacologia , Ratos , Ratos Sprague-Dawley , Crânio/lesões , Crânio/metabolismo , Crânio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...