Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398531

RESUMO

The electrocatalytic nitrogen reduction reaction (NRR) is considered a viable alternative to the Haber-Bosch process for ammonia synthesis, and the design of highly active and selective catalysts is crucial for the industrialization of the NRR. Dual-atom catalysts (DACs) with dual active sites offer flexible active sites and synergistic effects between atoms, providing more possibilities for the tuning of catalytic performance. In this study, we designed 48 graphene-based DACs with N4O2 coordination (MM'@N4O2-G) using density functional theory. Through a series of screening strategies, we explored the reaction mechanisms of the NRR for eight catalysts in depth and revealed the "acceptance-donation" mechanism between the active sites and the N2 molecules through electronic structure analysis. The study found that the limiting potential of the catalysts exhibited a volcano-shaped relationship with the d-band center of the active sites, indicating that the synergistic effect between the bimetallic components can regulate the d-band center position of the active metal M, thereby controlling the reaction activity. Furthermore, we investigated the selectivity of the eight DACs and identified five potential NRR catalysts. Among them, MoCo@N4O2-G showed the best NRR performance, with a limiting potential of -0.20 V. This study provides theoretical insights for the design and development of efficient NRR electrocatalysts.

2.
Environ Sci Technol ; 57(40): 14917-14928, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751292

RESUMO

The combined exposure of multiple metals imposes a substantial burden on the ecophysiological functions in organisms; however, the precise mechanism(s) remains largely unknown. Here, adult female A. ventricosus were exposed to single and combined exposure to cadmium (Cd) and lead (Pb) through the food chain. The aim was to explore the combined toxicity of these metals on silk production and web-weaving behavior at physiological, cellular morphological, and transcriptomic levels. The Cd and Pb combined exposure significantly inhibited the ability of silk production and web-weaving, including reduced silk fiber weight and diameter of single strands, lowered weaving position, induced nocturnal weaving, and increased instances of no-web, and showed a dose-response relationship on the Cd and Pb bioaccumulation. Concurrently, severe oxidative stress and degenerative changes in cells were observed. In addition, the combined pollution of Cd and Pb demonstrated synergistic effects, influenced by variations in concentration, on the enrichment of metals, inhibition of silk weight, oxidative damage, and cellular degeneration. At the transcriptome level, the upregulated ampullate spidroin genes and downregulated amino acid anabolic genes, upregulated Far genes and downregulated cytoskeleton-related TUBA genes, and overexpressed AChE and Glu genes may tend to present promising potential as biomarkers for silk protein synthesis, cellular degeneration, and neurotransmitter induction. This study offers an enormous capability for a comprehensive understanding of the eco-toxicological effects and mechanisms of multiheavy metals pollution.

3.
J Mol Graph Model ; 80: 293-298, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414048

RESUMO

The transition metal and nitrogen co-doped graphene as efficient electrocatalysts of oxygen reduction reaction (ORR) is promising to achieve large-scale applications of the full cells. In this work, we investigated the active sites and ORR mechanism on IrN4 doped divacancy graphene (IrN4-Gra) by using the density functional method. The active sites are identified as the IrN4 moiety and its adjacent ten C atoms. ORR on IrN4-Gra is a four-electron process. OOH hydrogenated into OH + OH is the kinetically most favorable pathway. The rate-determining step is OOH + H → OH + OH with energy barrier 1.01 eV. The predicted working potential is 0.41 V. Hence, IrN4-Gra might be a promising ORR catalyst.


Assuntos
Grafite/química , Metais/química , Modelos Teóricos , Nitrogênio/química , Oxirredução , Oxigênio/química , Adsorção , Catálise , Domínio Catalítico , Teoria da Densidade Funcional , Modelos Moleculares
4.
J Biomed Mater Res A ; 100(12): 3511-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22767362

RESUMO

Ceramic-derived materials have shown enhanced osteogenic potential for bone tissue engineering applications. Silica is the major component of bioglass, and titania, the oxide complex of titanium, has been found to enhance osteoblast differentiation. In this study, three groups of sol-gel-derived silica-titania fibrous meshes with precursor ratios of Ti:Si = 7:3, 1:1, 3:7 were fabricated by electrospinning. The effects of silica content on the crystal phase and morphology of silica-titania hybrid nanofiber meshes were also analyzed by scanning electron microscopy, X-ray diffraction, and laser confocal microscopy. The osteogenic potential of the silica-titania meshes was evaluated by seeding mesenchymal stem cells (MSCs) on each mesh and determining cell number, osteodifferentiation markers, and osteopontin production over time. Our results show that cells proliferated throughout the mesh surfaces with similar morphology in all groups. Decreased cell proliferation was observed with the fiber meshes compared with glass controls, whereas cell differentiation toward osteoblast was enhanced on the mesh groups, especially on the Ti:Si = 7:3 group. These findings suggest that higher fiber diameter, degree of crystallization, and titania content of nanofibers can enhance osteodifferentiation of MSCs.


Assuntos
Nanofibras/química , Osseointegração/efeitos dos fármacos , Dióxido de Silício/farmacologia , Engenharia Tecidual/métodos , Titânio/farmacologia , Animais , Forma Celular/efeitos dos fármacos , Células Cultivadas , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia Confocal , Nanofibras/ultraestrutura , Ratos , Ratos Wistar , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...