Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937432

RESUMO

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Assuntos
COVID-19 , Proteínas Culina , Proteínas de Choque Térmico HSP90 , SARS-CoV-2 , Ubiquitinação , Replicação Viral , Humanos , Proteínas Culina/genética , Proteínas Culina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , COVID-19/virologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/imunologia , Ubiquitinação/genética , Células HEK293 , Benzoquinonas/farmacologia , Estabilidade Proteica , Células Vero , Proteínas Virais/genética , Proteínas Virais/metabolismo , Lactamas Macrocíclicas
2.
Eur J Med Chem ; 273: 116498, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762916

RESUMO

The progressive emergence of SARS-CoV-2 variants has necessitated the urgent exploration of novel therapeutic strategies to combat the COVID-19 pandemic. The SARS-CoV-2 main protease (Mpro) represents an evolutionarily conserved therapeutic target for drug discovery. This study highlights the discovery of meisoindigo (Mei), derived from the traditional Chinese medicine (TCM) Indigo naturalis, as a novel non-covalent and nonpeptidic Mpro inhibitor. Substantial optimizations and structure-activity relationship (SAR) studies, guided by a structure-based drug design approach, led to the identification of several Mei derivatives, including S5-27 and S5-28, exhibiting low micromolar inhibition against SARS-CoV-2 Mpro with high binding affinity. Notably, S5-28 provided significant protection against wild-type SARS-CoV-2 in HeLa-hACE2 cells, with EC50 up to 2.66 µM. Furthermore, it displayed favorable physiochemical properties and remarkable gastrointestinal and metabolic stability, demonstrating its potential as an orally bioavailable drug for anti-COVID-19 therapy. This research presents a promising avenue for the development of new antiviral agents, offering hope in the ongoing battle against COVID-19.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , SARS-CoV-2 , Humanos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Relação Estrutura-Atividade , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Descoberta de Drogas , Administração Oral , Animais , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Células HeLa , COVID-19/virologia , Estrutura Molecular , Ratos , Testes de Sensibilidade Microbiana , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/uso terapêutico , Simulação de Acoplamento Molecular , Desenho de Fármacos
3.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793649

RESUMO

Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.


Assuntos
Vacinas contra Influenza , Vírion , Animais , Cães , Células Madin Darby de Rim Canino , Vírion/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Cultura de Vírus/métodos , Orthomyxoviridae/isolamento & purificação , Técnicas de Cultura de Células/métodos
4.
Rev Med Virol ; 34(1): e2500, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126937

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously producing new variants, necessitating effective therapeutics. Patients are not only confronted by the immediate symptoms of infection but also by the long-term health issues linked to long COVID-19. Activation of epidermal growth factor receptor (EGFR) signalling during SARS-CoV-2 infection promotes virus propagation, mucus hyperproduction, and pulmonary fibrosis, and suppresses the host's antiviral response. Over the long term, EGFR activation in COVID-19, particularly in COVID-19-induced pulmonary fibrosis, may be linked to the development of lung cancer. In this review, we have summarised the significance of EGFR signalling in the context of SARS-CoV-2 infection. We also discussed the targeting of EGFR signalling as a promising strategy for COVID-19 treatment and highlighted erlotinib as a superior option among EGFR inhibitors. Erlotinib effectively blocks EGFR and AAK1, thereby preventing SARS-CoV-2 replication, reducing mucus hyperproduction, TNF-α expression, and enhancing the host's antiviral response. Nevertheless, to evaluate the antiviral efficacy of erlotinib, relevant clinical trials involving an appropriate patient population should be designed.


Assuntos
COVID-19 , Receptores ErbB , Transdução de Sinais , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Síndrome de COVID-19 Pós-Aguda , Fibrose Pulmonar/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Front Public Health ; 11: 1188072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026370

RESUMO

Objective: The purpose of this study was to investigate the pathways by which health literacy (HL), social support, and self-efficacy influence self-management behaviors of pregnant women with Gestational diabetes mellitus (GDM) and the interrelationships between the variables. Methods: A total of 565 pregnant women with GDM was recruited. The Demographic Characteristics Form, Health Literacy Scale, Perceived Social Support Scale, General Self-efficacy Scale and GDM Self-management Behavior Scale were used for data collection. Descriptive statistics, zero-ordered correlation analysis, and multiple linear regression analysis were performed on the variables; Structural Equation Model (SEM) were constructed for pathway analysis. Results: A positive correlation was found between health literacy, social support, self-efficacy, and self-management behaviors among pregnant women with GDM after adjusting for age, education level, income level, work status, parity, and family history of diabetes (r ranging from 0.203 to 0.533). A further multiple linear regression analysis showed that functional HL, communicative HL, critical HL, social support, and self-efficacy were all independent influences on self-management behaviors and accounted for 36.3% of the variance. Communicative HL and critical HL explained the strongest self-management behaviors (ß = 0.316 and 0.255, respectively, p < 0.001). The SEM model was suitable for χ2/DF = 2.860, RMSEA = 0.060, IFI = 0.953, TLI = 0.943, and CFI = 0.952. The results showed direct positive effects of health literacy on self-management behaviors and self-efficacy, direct positive effects of social support on health literacy and self-efficacy. Social support and self-efficacy have had no significant direct impact on self-management behaviors, but social support may indirectly influence self-management behaviors through the health literacy mediation role. Conclusion: Healthcare providers should pay attention to the positive impacts of health literacy and social support on self-management behaviors of pregnant women with GDM. Improving the health literacy level of pregnant women with GDM should be the key point of intervention in practice, and the social support system should be fully mobilized to enhance emotional support and life support to promote the improvement of self-management behaviors.


Assuntos
Diabetes Gestacional , Letramento em Saúde , Autogestão , Humanos , Feminino , Gravidez , Gestantes , Diabetes Gestacional/terapia , Autoeficácia , Apoio Social
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(5): 994-999, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37866958

RESUMO

Objective: To investigate the apolipoprotein C-3 (APOC3) gene Sst Ⅰ polymorphism and its relationship with changes in serum lipids in patients with gestational diabetes mellitus (GDM). Methods: A total of 630 pregnant women with GDM and 1027 normal pregnant controls were covered in the study. The genotype and allele frequencies of APOC3 Sst Ⅰ polymorphism were analyzed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose (Glu) were measured by enzymatic methods. Plasma insulin (INS) was measured by chemiluminescence. Apolipoproteins A 1 (apoA1) and B (apoB) levels were measured by turbidimetric immunoassay. Results: The allele frequencies of S1 and S2 of the APOC3 polymorphism at the SstⅠ locus were 0.704 and 0.296 in the GDM group and 0.721 and 0.279 in the control group, respectively. There was no significant difference in genotype frequency and allele frequency of APOC3 Sst Ⅰ polymorphism between the GDM and the control groups ( P>0.05). In the GDM group, those with S2S2 and S1S2 genotypes had higher plasma HDL-C levels and lower atherogenic index (AI) values than those with S1S1 genotype did, with the differences being statistically significant (all P<0.05). GDM patients were then divided into obesity and non-obesity subgroups. Further subgroup analysis showed that the association of APOC3 genotype with changes in HDL-C levels was observed only in obese GDM patients, while the association of APOC3 genotype with changes in AI values was observed in both obese and nonobese patients. In addition, in obese GDM patients, those with S2S2 genotype had significantly higher plasma TG levels than those with S1S1 and S1S2 genotypes did ( P<0.05 and P<0.01, respectively). In non-obese GDM patients, those with S2S2 genotype had significantly lower apoB/apoA1 ratio than S2S2 carriers did ( P<0.05). No genotype-related effect on lipid and apolipoprotein variations was evident in the normal controls. Conclusion: APOC3 Sst Ⅰ polymorphism in GDM patients is associated with HDL-C and TG levels as well as AI value and apoB/apoA1 ratio. The changes in lipid levels and apolipoprotein ratio showed BMI-dependent features. However, association between polymorphism at the locus and the development of GDM was not observed.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Gravidez , Apolipoproteína A-I/genética , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , Apolipoproteínas C/genética , HDL-Colesterol , Diabetes Gestacional/genética , Frequência do Gene , Genótipo , Obesidade/genética , Triglicerídeos
7.
Front Psychol ; 14: 1125404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621938

RESUMO

Objective: This study aims to translate the Health Professional Communication Skills Scale (HP-CSS) into Chinese and assess its psychometric properties. Methods: A total of 836 healthcare professionals were recruited. The demographic characteristics form and HP-CSS were used for data collection. The psychometric properties of HP-CSS were evaluated by examining item analysis, construct validity, known-group discriminant validity, internal consistency, and split-half reliability. Results: In terms of item analysis, the critical ratio (CR) of 18 items was both >3 (CR ranging from 9.937 to 28.816), and the score of each item was positively correlated with the total score (r ranging from 0.357 to 0.778, P < 0.001). The fit indices showed that the original correlated four-factor model of HP-CSS was adequate: χ2 =722.801; df = 126; χ2/df = 5.737; RMSEA = 0.075; CFI = 0.923; NNFI = 0.908; TLI = 0.906; IFI = 0.923. In terms of known-group discriminant validity, the HP-CSS total score was related to gender, occupation, work years, and communication skill training. Cronbach's α coefficient was 0.922, and the split-half reliability was 0.865 for the total scale. Conclusion: The Chinese version of the HP-CSS is a reliable and valid instrument to evaluate communication skills among healthcare professionals in China.

8.
Eur J Obstet Gynecol Reprod Biol ; 287: 20-28, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270990

RESUMO

CONTEXT AND OBJECTIVES: Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnancy, and it often leads to adverse pregnancy outcomes and seriously harms the health of mothers and infants. ATP-binding cassette transporter G1 (ABCG1) plays critical roles in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport. This study was designed to explore the relevance of the ABCG1 polymorphisms in the atherometabolic risk in GDM. STUDY DESIGN: The case-control population consists of 1504 subjects. The rs2234715 and rs57137919 single nucleotide polymorphisms (SNPs) were genotyped using PCR and DNA sequencing, and clinical and metabolic parameters were determined. RESULTS: The genotype distributions of the two SNPs showed no difference between the GDM patient and control groups. However, the rs57137919 polymorphism was associated with total cholesterol (TC), and diastolic blood pressure (DBP) levels in patients with GDM. Moreover, subgroup analysis showed that this polymorphism was associated with ApoA1 and DBP levels in overweight/obese patients with GDM, while it was associated with TC, and gestational weight gain (GWG) in non-obese patients with GDM. Meanwhile, the rs2234715 polymorphism was found to be associated with neonatal birth height in non-obese patients with GDM. CONCLUSIONS: The two polymorphisms in the ABCG1 have an influence on atherometabolic traits, GWG, and fetal growth in GDM, depending on the BMI of the patients.


Assuntos
Diabetes Gestacional , Recém-Nascido , Humanos , Feminino , Gravidez , Diabetes Gestacional/epidemiologia , Gestantes , Transportadores de Cassetes de Ligação de ATP/genética , Resultado da Gravidez , Colesterol , Índice de Massa Corporal , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo
9.
Front Mol Neurosci ; 16: 1096930, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866356

RESUMO

Background: Pain plays an important role in chronic ankle instability (CAI), and prolonged pain may be associated with ankle dysfunction and abnormal neuroplasticity. Purpose: To investigate the differences in resting-state functional connectivity among the pain-related brain regions and the ankle motor-related brain regions between healthy controls and patients with CAI, and explore the relationship between patients' motor function and pain. Study design: A cross-database, cross-sectional study. Methods: This study included a UK Biobank dataset of 28 patients with ankle pain and 109 healthy controls and a validation dataset of 15 patients with CAI and 15 healthy controls. All participants underwent resting-state functional magnetic resonance imaging scanning, and the functional connectivity (FC) among the pain-related brain regions and the ankle motor-related brain regions were calculated and compared between groups. The correlations between the potentially different functional connectivity and the clinical questionnaires were also explored in patients with CAI. Results: The functional connection between the cingulate motor area and insula significantly differed between groups in both the UK Biobank (p = 0.005) and clinical validation dataset (p = 0.049), which was also significantly correlated with Tegner scores (r = 0.532, p = 0.041) in patients with CAI. Conclusion: A reduced functional connection between the cingulate motor area and the insula was present in patients with CAI, which was also directly correlated with reduction in the level of patient physical activity.

10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 361-366, 2023 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-36949699

RESUMO

Objective: To investigate the cholesterol 7α-hydroxylase gene ( CYP7A1)-204A/C single nucleotide polymorphism and its relationship with the blood lipid levels of pregnant women with gestational diabetes mellitus (GDM) and normal pregnant women. Methods: The genotype and allele frequencies of CYP7A1-204A/C gene polymorphism of 1037 normal pregnant women, the normal controls, and 627 pregnant women with GDM were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and blood glucose (Glu) were measured by enzymatic assay. Chemiluminescence determination of plasma insulin (Ins) was conducted. Apolipoproteins A1 (apoA1) and B (apoB) were measured by the turbidimetric immunoassay. Results: Allele frequencies of A and C at the CYP7A1-204A/C polymorphic locus were 0.586 and 0.414, respectively, in the GDM group and 0.557 and 0.443, respectively in the control group. The distribution of genotype frequencies in both groups showed conformity with the Hardy-Weinberg principle. There was no significant difference in allele and genotype frequencies between the GDM group and the control group. In the control group, carriers of the genotype AA were associated with significantly higher concentrations of apoA1 and lower levels of Ins and homeostatic model assessment of insulin resistance (HOMA-IR) compared with those with genotype CC (all P<0.05). In the non-obese subgroup of the control subjects, carriers of the genotype CC were associated with significantly higher plasma TG or apoA1 levels compared with those with genotype AA ( P<0.05). In the GDM group, carriers with genotype AA of CYP7A1-204A/C polymorphism had elevated levels of gestational weight gain (GWG) compared with those with genotype CC ( P<0.05). Conclusion: These results suggest that 204A/C polymorphism in the CYP7A1 gene is not associated with GDM, but may be closely associated with gestational weight gain in pregnant women with GDM. Variants in this locus are strongly associated with plasma apoA1, Ins, and HOMA-IR levels in the controls and elevated plasma TG levels in non-obese controls.


Assuntos
Diabetes Gestacional , Ganho de Peso na Gestação , Feminino , Humanos , Gravidez , Colesterol 7-alfa-Hidroxilase/genética , HDL-Colesterol , Diabetes Gestacional/genética , Predisposição Genética para Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Triglicerídeos
11.
Front Chem ; 10: 959525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910717

RESUMO

Single-atom catalysis is a research Frontier and has attracted extensive interests in catalysis. Significant progresses have been carried out in the synthesis and characterization of metal single-atom catalysts (SACs). However, the stability and catalytic reactivity of metal SAC at elevated temperatures are not well documented because single atoms sinter at elevated temperatures. Therefore, the development of stable and reactive SAC at high temperatures remains a formidable challenge. In this perspective, we summarize recent efforts on the preparation of the thermally-stable SACs synthesized at elevated temperature via the reverse-Ostwald ripening mechanism, including the approaches of atom trapping and vapor-phase self-assembly. The reducibility of lattice oxygen, the loading upper limit and the location of the metal single atom are discussed, combining experiments with simulations. In addition, we demonstrate that the coordination structure of the metal single atom can be tailored to address the relationship of structure and performances of the metal SAC in reactions. We expect that this perspective can provide some insights to guide the study for the rational design of thermally-stable and active single atom catalysts, which are especially suitable for high-temperature reactions.

12.
J Virol ; 96(17): e0074122, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35980206

RESUMO

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Assuntos
Infecções por Coronavirus , Interações entre Hospedeiro e Microrganismos , Coronavírus da Síndrome Respiratória do Oriente Médio , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Proteínas Virais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Citocinas/imunologia , Humanos , Imunidade Inata , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral
13.
Mol Cancer ; 21(1): 109, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524319

RESUMO

BACKGROUND: Emerging evidence suggest the critical role of circular RNAs (circRNAs) in disease development especially in various cancers. However, the oncogenic role of circRNAs in hepatocellular carcinoma (HCC) is still largely unknown. METHODS: RNA sequencing was performed to identify significantly upregulated circRNAs in paired HCC tissues and non-tumor tissues. CCK-8 assay, colony formation, transwell, and xenograft mouse models were used to investigate the role of circRNAs in HCC proliferation and metastasis. Small interfering RNA (siRNA) was used to silence gene expression. RNA immunoprecipitation, biotin pull-down, RNA pull-down, luciferase reporter assay and western blot were used to explore the underlying molecular mechanisms. RESULTS: Hsa_circ_0095868, derived from exon 5 of the MDK gene (named circMDK), was identified as a new oncogenic circRNA that was significantly upregulated in HCC. The upregulation of circMDK was associated with the modification of N6-methyladenosine (m6A) and poor survival in HCC patients. Mechanistically, circMDK sponged miR-346 and miR-874-3p to upregulate ATG16L1 (Autophagy Related 16 Like 1), resulting to the activation of PI3K/AKT/mTOR signaling pathway to promote cell proliferation, migration and invasion. Poly (ß-amino esters) (PAEs) were synthesized to assist the delivery of circMDK siRNA (PAE-siRNA), which effectively inhibited tumor progression without obvious adverse effects in four liver tumor models including subcutaneous, metastatic, orthotopic and patient-derived xenograft (PDX) models. CONCLUSIONS: CircMDK could serve as a potential tumor biomarker that promotes the progression of HCC via the miR-346/874-3p-ATG16L1 axis. The PAE-based delivery of siRNA improved the stability and efficiency of siRNA targeting circMDK. The PAE-siRNA nanoparticles effectively inhibited HCC proliferation and metastasis in vivo. Our current findings offer a promising nanotherapeutic strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , RNA Interferente Pequeno , Regulação para Cima
14.
PLoS One ; 17(4): e0266780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35446863

RESUMO

BACKGROUND: Colonoscopy is widely used for the screening, diagnosis and treatment of intestinal diseases. Adequate bowel preparation is a prerequisite for high-quality colonoscopy. However, the rate of adequate bowel preparation in outpatients is low. Several studies on supplementary education methods have been conducted to improve the rate of adequate bowel preparation in outpatients. However, the controversial results presented encourage us to perform this meta-analysis. METHOD: According to the PRISMA statement (2020), the meta-analysis was registered on PROSPERO. We searched all studies up to August 28, 2021, in the three major electronic databases of PubMed, Web of Science and Cochrane Library. The primary outcome was adequate bowel preparation rate, and the secondary outcomes included bowel preparation quality score, polyp detection rate, adenoma detection rate, cecal intubation time, withdrawal time, nonattendance rate and willingness to repeat rate. If there was obvious heterogeneity, the funnel plot combined with Egger's test, meta-regression analysis, sensitivity analysis and subgroup analysis were used to detect the source of heterogeneity. RevMan 5.3 and Stata 17.0 software were used for statistical analysis. RESULTS: A total of 2061 records were retrieved, and 21 full texts were ultimately included in the analysis. Our meta-analysis shows that supplementary education can increase the rate of adequate bowel preparation for outpatients (79.9% vs 72.9%, RR = 1.14, 95% CI: 1.08-1.20, I2 = 87%, p<0.00001). Supplementary education shortened the withdrawal time (MD: -0.80, 95% CI: -1.54 to -0.05, p = 0.04) of outpatients, increased the Boston Bowel Preparation Scale (MD: 0.40, 95% CI: 0.36 to 0.44, p<0.00001), reduced the Ottawa Bowel Preparation Scale (MD: -1.26, 95% CI: -1.66 to -0.86, p<0.00001) and increased the willingness to repeat (91.9% vs 81.4%, RR:1.14, 95% CI: 1.04 to 1.25, p = 0.004). CONCLUSION: Supplementary education for outpatients based on the standard of care can significantly improve the quality of bowel preparation.


Assuntos
Adenoma , Colonoscopia , Adenoma/diagnóstico , Catárticos/uso terapêutico , Ceco , Colonoscopia/métodos , Humanos , Pacientes Ambulatoriais , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
J Biol Chem ; 298(2): 101584, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032548

RESUMO

With the outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), coronaviruses have begun to attract great attention across the world. Of the known human coronaviruses, however, Middle East respiratory syndrome coronavirus (MERS-CoV) is the most lethal. Coronavirus proteins can be divided into three groups: nonstructural proteins, structural proteins, and accessory proteins. While the number of each of these proteins varies greatly among different coronaviruses, accessory proteins are most closely related to the pathogenicity of the virus. We found for the first time that the ORF3 accessory protein of MERS-CoV, which closely resembles the ORF3a proteins of severe acute respiratory syndrome coronavirus and SARS-CoV-2, has the ability to induce apoptosis in cells in a dose-dependent manner. Through bioinformatics analysis and validation, we revealed that ORF3 is an unstable protein and has a shorter half-life in cells compared to that of severe acute respiratory syndrome coronavirus and SARS-CoV-2 ORF3a proteins. After screening, we identified a host E3 ligase, HUWE1, that specifically induces MERS-CoV ORF3 protein ubiquitination and degradation through the ubiquitin-proteasome system. This results in the diminished ability of ORF3 to induce apoptosis, which might partially explain the lower spread of MERS-CoV compared to other coronaviruses. In summary, this study reveals a pathological function of MERS-CoV ORF3 protein and identifies a potential host antiviral protein, HUWE1, with an ability to antagonize MERS-CoV pathogenesis by inducing ORF3 degradation, thus enriching our knowledge of the pathogenesis of MERS-CoV and suggesting new targets and strategies for clinical development of drugs for MERS-CoV treatment.


Assuntos
Apoptose , Infecções por Coronavirus/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas não Estruturais Virais/metabolismo , Células A549 , Linhagem Celular , Biologia Computacional , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Células Epiteliais/fisiologia , Células Epiteliais/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos
16.
Front Microbiol ; 12: 712081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707577

RESUMO

COVID-19 is mainly associated with respiratory distress syndrome, but a subset of patients often present gastrointestinal (GI) symptoms. Imbalances of gut microbiota have been previously linked to respiratory virus infection. Understanding how the gut-lung axis affects the progression of COVID-19 can provide a novel framework for therapies and management. In this study, we examined the gut microbiota of patients with COVID-19 (n = 47) and compared it to healthy controls (n = 19). Using shotgun metagenomic sequencing, we have identified four microorganisms unique in COVID-19 patients, namely Streptococcus thermophilus, Bacteroides oleiciplenus, Fusobacterium ulcerans, and Prevotella bivia. The abundances of Bacteroides stercoris, B. vulgatus, B. massiliensis, Bifidobacterium longum, Streptococcus thermophilus, Lachnospiraceae bacterium 5163FAA, Prevotella bivia, Erysipelotrichaceae bacterium 6145, and Erysipelotrichaceae bacterium 2244A were enriched in COVID-19 patients, whereas the abundances of Clostridium nexile, Streptococcus salivarius, Coprococcus catus, Eubacterium hallii, Enterobacter aerogenes, and Adlercreutzia equolifaciens were decreased (p < 0.05). The relative abundance of butyrate-producing Roseburia inulinivorans is evidently depleted in COVID-19 patients, while the relative abundances of Paraprevotella sp. and the probiotic Streptococcus thermophilus were increased. We further identified 30 KEGG orthology (KO) modules overrepresented, with 7 increasing and 23 decreasing modules. Notably, 15 optimal microbial markers were identified using the random forest model to have strong diagnostic potential in distinguishing COVID-19. Based on Spearman's correlation, eight species were associated with eight clinical indices. Moreover, the increased abundance of Bacteroidetes and decreased abundance of Firmicutes were also found across clinical types of COVID-19. Our findings suggest that the alterations of gut microbiota in patients with COVID-19 may influence disease severity. Our COVID-19 classifier, which was cross-regionally verified, provides a proof of concept that a set of microbial species markers can distinguish the presence of COVID-19.

17.
Appl Microbiol Biotechnol ; 105(9): 3559-3572, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33937925

RESUMO

N-linked glycosylation plays critical roles in folding, receptor binding, and immunomodulating of hemagglutinin (HA), the main antigen in influenza vaccines. Chicken embryos are the predominant production host for influenza vaccines, but Madin-Darby canine kidney (MDCK) cells have emerged as an important alternative host. In this study, we compared glycosylation patterns, including the occupancy of potential glycosylation sites and the distribution of different glycans, on the HAs of three strains of influenza viruses for the production a trivalent seasonal flu vaccine for the 2015-2016 Northern Hemisphere season (i.e., A/California/7/2009 (H1N1) X179A, A/Switzerland/9715293/2013 (H3N2) NIB-88, and B/Brisbane/60/2008 NYMC BX-35###). Of the 8, 12, and 11 potential glycosylation sites on the HAs of H1N1, H3N2, and B strains, respectively, most were highly occupied. For the H3N2 and B strains, MDCK-derived HAs contained more sites being partially occupied (<95%) than embryo-derived HAs. A highly sensitive glycan assay was developed where 50 different glycans were identified, which was more than what has been reported previously, and their relative abundance was quantified. In general, MDCK-derived HAs contain more glycans of higher molecular weight. High-mannose species account for the most abundant group of glycans, but at a lower level as compared to those reported in previous studies, presumably due to that lower abundance, complex structure glycans were accounted for in this study. The different glycosylation patterns between MDCK- and chicken embryo-derived HAs may help elucidate the role of glycosylation on the function of influenza vaccines. KEY POINTS: • For the H3N2 and B strains, MDCK-derived HAs contained more partially (<95%) occupied glycosylation sites. • MDCK-derived HAs contained more glycans of higher molecular weight. • A systematic comparison of glycosylation on HAs used for trivalent seasonal flu vaccines was conducted.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Embrião de Galinha , Galinhas , Cães , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Estações do Ano
18.
Int J Biol Macromol ; 176: 1-12, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548314

RESUMO

SARS-CoV-2 is the etiological agent responsible for the ongoing pandemic of coronavirus disease 2019 (COVID-19). The main protease of SARS-CoV-2, 3CLpro, is an attractive target for antiviral inhibitors due to its indispensable role in viral replication and gene expression of viral proteins. The search of compounds that can effectively inhibit the crucial activity of 3CLpro, which results to interference of the virus life cycle, is now widely pursued. Here, we report that epigallocatechin-3-gallate (EGCG), an active ingredient of Chinese herbal medicine (CHM), is a potent inhibitor of 3CLpro with half-maximum inhibitory concentration (IC50) of 0.874 ± 0.005 µM. In the study, we retrospectively analyzed the clinical data of 123 cases of COVID-19 patients, and found three effective Traditional Chinese Medicines (TCM) prescriptions. Multiple strategies were performed to screen potent inhibitors of SARS-CoV-2 3CLpro from the active ingredients of TCMs, including network pharmacology, molecular docking, surface plasmon resonance (SPR) binding assay and fluorescence resonance energy transfer (FRET)-based inhibition assay. The SPR assay showed good interaction between EGCG and 3CLpro with KD ~6.17 µM, suggesting a relatively high affinity of EGCG with SARS-CoV-2 3CLpro. Our results provide critical insights into the mechanism of action of EGCG as a potential therapeutic agent against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina/análogos & derivados , Proteases 3C de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Adulto , Antivirais/administração & dosagem , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Catequina/administração & dosagem , Catequina/farmacologia , China/epidemiologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Masculino , Medicina Tradicional Chinesa/métodos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular/métodos , Pandemias , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Estudos Retrospectivos , Replicação Viral/efeitos dos fármacos , Adulto Jovem
19.
Front Endocrinol (Lausanne) ; 12: 782453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975757

RESUMO

Background: ATP-binding cassette transporter A1 (ABCA1) has important roles in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport, and is implicated in lipid-related disorders. Genetic variants are involved in the pathogenesis of gestational diabetes mellitus (GDM). The objective of this study was to investigate the association of rs2230806 (R219K), a single nucleotide polymorphism (SNP) in the lipid-related gene, with the risk of GDM and related traits. Methods: The SNP, rs2230806, was genotyped, and clinical and metabolic parameters were determined in 660 GDM patients and 1,097 control subjects. Genetic associations with related traits were also analyzed. Results: The genotype distributions were similar in GDM patients and normal controls. However, significant differences in the variables examined in the study subjects were noted across the three genotypes. The genotype at the rs2230806 polymorphism was significantly associated with HDL-cholesterol (HDL-C) levels and atherogenic index (AI) values in GDM patients and total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) levels in control subjects. Subgroup analysis showed that the polymorphism was associated with diastolic blood pressure, in addition to HDL-C levels and AI, in overweight/obese GDM patients, while it was associated with TC levels, AI, pre-pregnancy body mass index (BMI), and BMI at delivery in non-obese GDM patients. In addition, this polymorphism was associated with TC, LDL-C, and apoB levels in overweight/obese control subjects. Conclusions: The rs2230806 polymorphism in the ABCA1 gene was associated with variations in atherometabolic traits in GDM patients, with characteristics of BMI dependency, but not with GDM. Our findings highlight a link between related phenotypes in women with GDM and genetic factors.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Diabetes Gestacional/sangue , Diabetes Gestacional/genética , Variação Genética/genética , Polimorfismo de Nucleotídeo Único/genética , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/genética , China/epidemiologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Diabetes Gestacional/epidemiologia , Feminino , Humanos , Sobrepeso/sangue , Sobrepeso/epidemiologia , Sobrepeso/genética , Gravidez , Gestantes
20.
Biomed Res Int ; 2020: 3182919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354564

RESUMO

[This corrects the article DOI: 10.1155/2020/1594726.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...