Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 26(6): 700-709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35815376

RESUMO

Enamel possesses ingenious hierarchical structure that gives rise to superior fracture resistance. Despite considerable efforts devoted to characterization of fracture behavior of enamel, the role of rod decussation in fracture of enamel is largely unknown. In this study, the features of rod decussation in the inner enamel are experimentally identified, and analyses of crack growth in enamel are carried out using a micromechanical model of enamel, in which the structural features of the outer enamel and rod decussation of the inner enamel are incorporated. We carry out calculations within a framework based on the extended finite element method, and the crack growth and crack path selection are natural outcomes of imposed loading. We show that crack deflection in enamel is controlled by rod decussation. For crack growth in the parazone, the crack path is oriented along the axis of enamel rods, leading to gross crack deflection. The microstructure of inner enamel with intermediate inclination angle enables multiple crack deflections, giving rise to enhanced toughness. For crack growth in the diazone, the transition in orientation of crack deflection occurs as inclination angle increases. The relatively straight crack path emerges in the case of the microstructure of enamel with intermediate inclination angle, leading to weak fracture resistance. It is further found that compared with the diazone, the gross crack deflection in the parazone provides greater contribution to fracture resistance of enamel. The findings of this study provide a good mechanistic understanding of the role of rod decussation in enamel.


Assuntos
Fraturas Ósseas , Tioacetazona , Humanos
2.
ACS Appl Mater Interfaces ; 13(11): 13724-13734, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689273

RESUMO

At small scales, shape-programmable magnetic materials and self-sensing conductive materials have an enticing potential for realizing the functionalities that are unattainable by traditional machines. This work reports a facile preparation method of aself-sensing magnetism-responsive anisotropic films (SMAF) in which magnetic materials and conductive materials can be predesigned, oriented, and patterned without requiring an external magnetic field generator or other expensive devices. A variety of shaped magnetoactive films with complex chain-orientation structures that can achieve advanced actuation functions have been developed, such as magnetically driven flowers, windmills, and leaves. It is also verified that the as-prepared samples coated with the sensing layer can distinguish different actuation modes, such as inward bending, outward bending, twisting, and combined deformation, which would be conducive to further exploration and development of directionally responsive applications in the smart actuating system and soft robotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...