Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(3): 81, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709433

RESUMO

One of the primary concerns for the survival of the human species is the growing demand for food brought on by an increasing global population. New developments in genome-editing technology present promising opportunities for the growth of wholesome and prolific farm animals. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. Genome editing entails modifying genetic material by removing, adding, or manipulating particular DNA sequences from a particular locus in a way that does not happen naturally. The three primary genome editors are CRISPR/Cas 9, TALENs, and ZFNs. Each of these enzymes is capable of precisely severing nuclear DNA at a predetermined location. One of the most effective inventions is base editing, which enables single base conversions without the requirement for a DNA double-strand break (DSB). As reliable methods for precise genome editing in studies involving animals, cytosine and adenine base editing are now well-established. Effective zygote editing with both cytosine and adenine base editors (ABE) has resulted in the production of animal models. Both base editors produced comparable outcomes for the precise editing of point mutations in somatic cells, advancing the field of gene therapy. This review focused on the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of ZFNs, TALENs, and CRISPR/Cas9 base editors, and prime editing in diverse lab and farm animals. Additionally, we address the methodologies that can be used for gene regulation, base editing, and epigenetic alterations, as well as the significance of genome editing in animal models to better reflect real disease. We also look at methods designed to increase the effectiveness and precision of gene editing tools. Genome editing in large animals is used for a variety of purposes, including biotechnology to improve food production, animal health, and pest management, as well as the development of animal models for fundamental research and biomedicine. This review is an overview of the existing knowledge of the principles, methods, recent developments, outstanding applications, the advantages and disadvantages of zinc finger nucleases (ZFNs), transcription-activator-like endonucleases (TALENs), and clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR/Cas 9), base editors and prime editing in diverse lab and farm animals, which will offer better and healthier products for the entire human race.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Gado , Edição de Genes/métodos , Animais , Gado/genética , Resistência à Doença/genética
2.
Int J Nanomedicine ; 18: 2855-2871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283715

RESUMO

Introduction: The increasing industrial and biomedical utilization of graphene oxide silver nanoparticles (GO-AgNPs) raises the concern of nanosafety: exposure to the AgNPs or GO-AgNPs increases the generation of reactive oxygen species (ROS), causes DNA damage and alters the expression of whole transcriptome including mRNA, miRNA, tRNA, lncRNA, circRNA and others. Although the roles of different RNAs in epigenetic toxicity are being studied during the last decade, but still we have little knowledge about the role of circle RNAs (circRNAs) in epigenetic toxicity. Methods: Rabbit fetal fibroblast cells (RFFCs) were treated with 0, 8, 16, 24, 32 and 48 µg/mL GO-AgNPs to test the cell viability and 24 µg/mL GO-AgNPs was selected as the experimental dose. After 24 h treatment with 24 µg/mL GO-AgNPs, the level of ROS, malondialdehyde (MDA), superoxide dismutase (SOD), intracellular ATP, glutathione peroxidase (GPx), and glutathione reductase (Gr) were measured in the RFFCs. High-throughput whole transcriptome sequencing was performed to compare the expression of circRNAs, long non-coding RNAs (lncRNA) and mRNA between 24 µg/mL GO-AgNPs-treated RFFCs and control cells. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to validate the accuracy of circRNA sequencing data. Bioinformatics analyses were performed to reveal the potential functional roles and related pathways of differentially expressed circRNAs, lncRNA and mRNA and to construct a circRNA-miRNA-mRNA interaction network. Results: We found that 57 circRNAs, 75 lncRNAs, and 444 mRNAs were upregulated while 35 circRNAs, 21 lncRNAs, and 186 mRNAs were downregulated. These differentially expressed genes are mainly involved in the transcriptional mis-regulation of cancer through several pathways: MAPK signaling pathway (circRNAs), non-homologous end-joining (lncRNAs), as well as PPAR and TGF-beta signaling pathways (mRNAs). Conclusion: These data revealed the potential roles of circRNAs in the GO-AgNPs induced toxicity through oxidative damage, which would be the basis for further research to determine their roles in the regulation of different biological processes.


Assuntos
Nanopartículas Metálicas , MicroRNAs , RNA Longo não Codificante , Animais , Coelhos , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Prata/toxicidade , Prata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/toxicidade , Perfilação da Expressão Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , MicroRNAs/genética , Estresse Oxidativo , Epigênese Genética
3.
Front Bioeng Biotechnol ; 11: 1090814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020511

RESUMO

The widespread use of graphene oxide-silver nanoparticle nanocomposites (GO-AgNPs) in biomedical sciences is increasing the chances of human and animal exposure to its chronic non-toxic doses. Exposure to AgNPs-related nanomaterials may result in the negative effect on the dam, fetus and offspring. However, there are only little available information for profound understanding of the epigenetic alteration in the cells and animals caused by low-dose chronic exposure of GO-AgNPs. The present study investigated the effect of 0.5 µg/mL GO-AgNPs for 10 weeks on the differential expression of circular RNAs (circRNAs) in caprine fetal fibroblast cells (CFFCs), and this dose of GO-AgNPs did not affect cell viability and ROS level. We predicted the functions of those differentially expressed (DE) circRNAs in CFFCs by bioinformatics analysis. Furthermore, we validated the expression of ten DE circRNAs using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) to ensure the reliability of the sequencing data. Our results showed that the DE circRNAs may potentially regulate the GO-AgNPs-inducing epigenetic toxicity through a regulatory network consisted of circRNAs, miRNAs and messenger RNAs (mRNAs). Therefore, the epigenetics toxicity is essential to assess the biosafety level of GO-AgNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...