Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(1): 468-478, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37649238

RESUMO

BACKGROUND: The environmental pollution and ecological risks caused by the widespread use of antibiotics have attracted attention in recent years. Biochar materials have a rich pore diameter and can effectively adsorb pollutants from wastewater. However, biochar will experience high temperatures, freezing and thawing in nature, affecting its physicochemical properties and adsorption capacity. Three types of aged biochar were prepared by artificial simulated aging using soybean straw as raw material. The aged biochar's elemental composition and functional group species were investigated by characterization analysis, and their adsorption kinetics and adsorption isotherms were studied. RESULTS: The specific surface area and pore size of the three aged biochars were lower than those of fresh biochars. The increased number of oxygen-containing functional groups of the aged biochars formed a water cluster interaction with norfloxacin (NOR), which was unfavorable to the adsorption of NOR. The adsorption mechanism of biochar on NOR comprises pore filling, electrostatic interaction, ion exchange and complexation. CONCLUSION: The adsorption of NOR on biochar before and after aging was spontaneous and was described by quasi-second kinetics and the Langmuir equation. Different aging methods influenced the physicochemical properties and adsorption performance of biochar, and the adsorption capacity of biochar was significantly reduced after aging. Therefore, the influence of climatic factors needs to be considered when using biochar to remove target pollutants. © 2023 Society of Chemical Industry.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Adsorção , Águas Residuárias , Glycine max , Antibacterianos , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/química
2.
Front Plant Sci ; 14: 1302763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126021

RESUMO

Introduction: The Songnen Plain is one of the three major saline-alkali areas in China, covering a vast area, where drought and overgrazing have exacerbated the salinization trend, and will have great potential for development if utilized rationally. Phosphorus, as one of important soil nutrients, plays a crucial role in plant growth. How to minimize its loss and migration has become a current research hotspot. The objective of the present study was to elucidate the adsorption properties of phosphorus in soils affected by salinization and to establish the correlation between the potential for phosphorus release and soil properties. Methods: A batch treatment test was conducted in this study using three soils with the various salinization degrees to examine the impact of environmental factors on the adsorption properties and potential release of phosphorus. Results and discussion: It was found that the maximum phosphorus adsorption by the three salinization soils in 0-360 minutes accounted for 86.8%-90.5% of the total adsorption capacity; the equilibrium adsorption capacity was: HS> MS> LS. In cases where the phosphorus level in the surrounding liquid is low, the three levels of salinized soils exhibited varying levels of phosphorus discharge, with the adsorbent acting as the origin of contaminants. The Pseudo-second-order model kinetics and Langmuir equation can well describe the adsorption process, and the adsorption process is spontaneous heat absorption with entropy increase. Increasing the pH led to an increase in the adsorption of phosphorus from the three salinized soils. Additionally, the adsorption was enhanced by introducing varying concentrations of Na+, Ca2+, and Al3+ to the background solution. The phosphorus eutrophication release risk (ERI) demonstrated a gradual decline as temperature increased. Correlation analysis revealed a noteworthy positive correlation between TN, TP, and ERI, as well as a significant negative correlation between CEC, K+, and ERI. Furthermore, there was a highly significant negative correlation between coarse silt and fine silt. Considering local climatic and environmental factors is crucial for controlling the adsorption capacity of phosphorus in various salinized soils, as it can unveil the mechanism of phosphorus adsorption and impact its migration and release risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...