Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(25): eadp0575, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896626

RESUMO

Dirac fermion in topological materials exhibits intriguing nonlinear optical responses. However, their direct correlation with the linearly dispersed band remains elusive experimentally. Here, we take topological semimetal ZrSiS as a paradigm, unveiling three unique nonlinear optical signatures of Dirac fermion. These signatures include strong quadrupolar response, quantum interference effect, and exponential divergent four-wave mixing (FWM), all of which are described by the prominent third-order nonlinear optical susceptibility. Resonantly enhanced by linear bands, quadrupolar second harmonic generation in centrosymmetric bulk overwhelms the electric-dipole contribution at the surface with inherent inversion symmetry breaking. Furthermore, owing to the interference between multiple resonant transition pathways within linear bands, difference-frequency FWM is several orders of magnitude stronger than sum-frequency FWM and third harmonic generation. The difference-frequency FWM further displays an inverse-square divergence toward degenerate excitation, whose scaling law perfectly matches with the long-sought behavior of Dirac fermion. These signatures lay the solid foundation toward the practical applications of topological materials in nonlinear optoelectronics and photonics.

2.
Opt Lett ; 49(8): 2117-2120, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621090

RESUMO

The characterization of inverted structures (crystallographic, ferroelectric, or magnetic domains) is crucial in the development and application of novel multi-state devices. However, determining these inverted structures needs a sensitive probe capable of revealing their phase correlation. Here a contrast-enhanced phase-resolved second harmonic generation (SHG) microscopy is presented, which utilizes a phase-tunable Soleil-Babinet compensator and the interference between the SHG fields from the inverted structures and a homogeneous reference. By this means, such inverted structures are correlated through the π-phase difference of SHG, and the phase difference is ultimately converted into the intensity contrast. As a demonstration, we have applied this microscopy in two scenarios to determine the inverted crystallographic domains in two-dimensional van der Waals material MoS2. Our method is particularly suitable for applying in vacuum and cryogenic environments while providing optical diffraction-limited resolution and arbitrarily adjustable contrast. Without loss of generality, this contrast-enhanced phase-resolved SHG microscopy can also be used to resolve other non-centrosymmetric inverted structures, e.g. ferroelectric, magnetic, or multiferroic phases.

3.
ACS Nano ; 17(19): 18905-18913, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37767802

RESUMO

Topological properties in quantum materials are often governed by symmetry and tuned by crystal structure and external fields, and hence, symmetry-sensitive nonlinear optical measurements in a magnetic field are a valuable probe. Here, we report nonlinear magneto-optical second harmonic generation (SHG) studies of nonmagnetic topological materials including bilayer WTe2, monolayer WSe2, and bulk TaAs. The polarization-resolved patterns of optical SHG under a magnetic field show nonlinear Kerr rotation in these time-reversal symmetric materials. For materials with 3-fold rotational symmetric lattice structure, the SHG polarization pattern rotates just slightly in a magnetic field, whereas in those with mirror or 2-fold rotational symmetry, the SHG polarization pattern rotates greatly and distorts. These different magneto-SHG characters can be understood by considering the superposition of the magnetic field-induced time-noninvariant nonlinear optical tensor and the crystal-structure-based time-invariant counterpart. The situation is further clarified by scrutinizing the Faraday rotation, whose subtle interplay with crystal symmetry accounts for the diverse behavior of the extrinsic nonlinear Kerr rotation in different materials. Our work illustrates the application of magneto-SHG techniques to directly probe nontrivial topological properties, and underlines the importance of minimizing extrinsic nonlinear Kerr rotation in polarization-resolved magneto-optical studies.

5.
Sci Adv ; 9(23): eadg7037, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294751

RESUMO

We report the direct observation of lattice phonons confined at LaAlO3/SrTiO3 (LAO/STO) interfaces and STO surfaces using the sum-frequency phonon spectroscopy. This interface-specific nonlinear optical technique unveiled phonon modes localized within a few monolayers at the interface, with inherent sensitivity to the coupling between lattice and charge degrees of freedom. Spectral evolution across the insulator-to-metal transition at LAO/STO interface revealed an electronic reconstruction at the subcritical LAO thickness, as well as strong polaronic signatures upon formation of the two-dimensional electron gas. We further discovered a characteristic lattice mode from interfacial oxygen vacancies, enabling us to probe such important structural defects in situ. Our study provides a unique perspective on many-body interactions at the correlated oxide interfaces.


Assuntos
Eletrônica , Fônons , Análise Espectral , Elétrons , Óxidos
6.
Opt Express ; 31(9): 14903-14910, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157344

RESUMO

Spectroscopy continues to provide possibilities for a deeper understanding of fundamental physical phenomena. Traditional spectral measurement method, dispersive Fourier transformation, is always limited by its realization condition (detection in the temporal far-field). Inspired by Fourier ghost imaging, we put forward an indirect spectrum measurement to overcome the limitation. The spectrum information is reconstructed via random phase modulation and near-field detection in the time domain. Since all operations are realized in the near-field region, the required length of dispersion fiber and optical loss are greatly reduced. Considering the application in spectroscopy, the length of required dispersion fiber, the spectrum resolution, the range of spectrum measurement and the requirement on bandwidth of photodetector are investigated.

7.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2915-2922, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36384825

RESUMO

Developing outer crown profile prediction models of typical urban greening tree species will lay a foundation for the spatial allocation optimization of urban greening. In this study, Pinus tabuliformis, a typical greening tree species in Shenyang, was selected as the research object. Based on the Crown Window device, a total of 60 sample trees were selected to measure the crown shape, with power equation, segmented polynomial equation, and modified Kozak equation as the basic models. By introducing crown structure variables (the maximum crown radius) and neighbour competition variables (mean tree height, mean diameter at breast height, mean crown width, number for the neighbour trees, and mean crown contact height between sample trees and neighbour trees) through reparameterization, we constructed an outer crown shape model of P. tabuliformis that incorporates neighbour tree competition and maximum crown radius. The results showed that modified Kozak equation had the largest Ra2 and the smallest RMSE, as well as good stability. After introducing the maximum crown radius and the mean DBH of neighbour trees into the basic model through reparameterization, the Ra2 of the model increased by 0.0693 and the MSER was 14.4%. The maximum crown radius had a great influence on the crown shape, while the crown radius increased with the increases of the maximum crown radius. The influence of mean DBH of neighbour trees on crown shape was weaker than that of maximum crown radius. The upper part of crown increased and the lower part of crown decreased with increasing neighbour tree competition. In this study, the marginal regression outer crown profile model of P. tabuliformis coupled with neighbour tree competition and the maximum crown radius showed good goodness of fit and could reasonably simulate and predict the crown shape of planted P. tabuliformis.


Assuntos
Pinus , Árvores
8.
Chem Sci ; 13(35): 10546-10554, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277652

RESUMO

The lack of understanding of the molecular-scale water adsorbed on TiO2 surfaces under ambient conditions has become a major obstacle for solving the long-time scientific and applications issues, such as the photo-induced wetting phenomenon and designing novel advanced TiO2-based materials. Here, with the molecular dynamics simulation, we identified an ordered water bilayer structure with a two-dimensional hydrogen bonding network on a rutile TiO2(110) surface at ambient temperature, corroborated by vibrational sum-frequency generation spectroscopy. The reduced number of hydrogen bonds between the water bilayer and water droplet results in a notable water contact angle (25 ± 5°) of the pristine TiO2 surface. This surface hydrophobicity can be enhanced by the adsorption of the formate/acetate molecules, and diminishes with dissociated H2O molecules. Our new physical framework well explained the long-time controversy on the origin of the hydrophobicity/hydrophilicity of the TiO2 surface, thus help understanding the efficiency of TiO2 devices in producing electrical energy of solar cells and the photo-oxidation of organic pollutants.

9.
Opt Express ; 30(2): 874-886, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209267

RESUMO

Although the theory of scattered speckles was initially established via idealization of treating the incident light as monochromatic, phenomenon and regulations of wide-spectrum speckles are yet urgent to be studied, with immense growing applications of broadband source such as femtosecond laser, light-emitting-diode and sunlight illumination. Here we quantitatively analyze the morphology and statistics of speckles produced by a point-like source with wide-spectrum, using a phase plate model to describe the scattering layer. Due to differences in induced phase related to wavelength, wide-spectrum speckle patterns appear radial divergence in intensity distribution, as well as in visibility of both speckles and that of the second-order coherence. This is significantly different from the translation-invariance of monochromatic speckles. The spatially-varying morphology and statistics of the speckles contain spatial and spectral information of the incidence, thus can be used as an indicator to achieve optical metrology or sensing with a wide-spectrum source in the scattering environment.

10.
Opt Lett ; 47(2): 234-237, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030575

RESUMO

Gapless Dirac fermions in monolayer graphene give rise to an abundance of peculiar physical properties, including exceptional broadband nonlinear optical responses. By tuning the chemical potential, stacking order, and photonic structures, the effective modulation of nonlinear optical phenomena in graphene has been demonstrated in recent years. Here, we demonstrate that optical helicity can be used as an extra tuning knob for four-wave mixing in gated graphene. Our results reveal the helicity selection rule for four-wave mixing in monolayer graphene, revealing nearly perfect circular polarization. Corresponding theoretical interpretations of the helicity selection rule that are also applicable to other nonlinear optical processes and materials are presented.

11.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3468-3476, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34676707

RESUMO

Based on the micro-core technology, we can accurately examine the tree cambium phenology and the radial growth at the cellular scale, and reveal the relationship between tree growth and climate. Pinus tabuliformis is one of the constructive species in forests of northern China. We investigated the growth pattern of P. tabuliformis in Shenyang and the changes in cambium and xylem cells throughout the growing season (April to November) in 2020. Results showed that the dividing activity in cambium started in early April and ended at the end of September. Xylem began to grow from the appearance of enlargement cells (mid April) to the end of the disappearance of lignified cells (late October), with a growth trajectory of 'S' shape curve. Approximately 53 xylem cells per row in radical direction were produced in 2020. The maximum growth rate (0.55 ind/row/day) occurred at the end of May, while the change of earlywood and latewood cells occurred at the end of July. When the minimum temperature above 0 ℃ in Shenyang, the cambium began to divide. The minimum critical temperature that affected the beginning and ending of xylem growth was 2-3 ℃. Precipitation promoted the growth in the growing season. The high temperature and insufficient water supply at the end of July were the main factors driving the differentiation of xylem cells to form earlywood and latewood.


Assuntos
Pinus , China , Clima , Temperatura Alta , Xilema
12.
Opt Express ; 29(20): 31068-31077, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615208

RESUMO

Research towards practical applications of ghost imaging attracts more and more attention in recent years. Signal-to-noise ratio (SNR) of bucket results thus quality of images can be greatly affected by environmental noise, such as strong background light. We introduce temporal cross-correlation into typical ghost imaging to improve SNR of bucket value, taking temporal profile of illumination pulses as a prior information. Experimental results at sunny noontime verified our method, with the imaging quality greatly improved for the object at a distance of 1.3km. We also show the possibility of 3-dimensional imaging, experimentally.

13.
Front Chem ; 9: 717167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485244

RESUMO

The behavior of liquid water molecules near an electrified interface is important to many disciplines of science and engineering. In this study, we applied an external gate potential to the silica/water interface via an electrolyte-insulator-semiconductor (EIS) junction to control the surface charging state. Without varying the ionic composition in water, the electrical gating allowed an efficient tuning of the interfacial charge density and field. Using the sum-frequency vibrational spectroscopy, we found a drastic enhancement of interfacial OH vibrational signals at high potential in weakly acidic water, which exceeded that from conventional bulk-silica/water interfaces even in strong basic solutions. Analysis of the spectra indicated that it was due to the alignment of liquid water molecules through the electric double layer, where the screening was weak because of the low ion density. Such a combination of strong field and weak screening demonstrates the unique tuning capability of the EIS scheme, and would allow us to investigate a wealth of phenomena at charged oxide/water interfaces.

14.
Nano Lett ; 21(12): 4937-4943, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114816

RESUMO

Distinct from carbon nanotubes, transition-metal dichalcogenide (TMD) nanotubes are noncentrosymmetric and polar and can exhibit some intriguing phenomena such as nonreciprocal superconductivity, chiral shift current, bulk photovoltaic effect, and exciton-polaritons. However, basic characterizations of individual TMD nanotubes are still quite limited, and much remains unclear about their structural chirality and electronic properties. Here we report an optical second-harmonic generation (SHG) study on multiwalled WS2 nanotubes on a single-tube level. As it is highly sensitive to the crystallographic symmetry, SHG microscopy unveiled multiple structural domains within a single WS2 nanotube, which are otherwise hidden under conventional white-light optical microscopy. Moreover, the polarization-resolved SHG anisotropy patterns revealed that different domains on the same tube can be of different chirality. In addition, we observed the excitonic states of individual WS2 nanotubes via SHG excitation spectroscopy, which were otherwise difficult to acquire due to the indirect band gap of the material.

15.
Appl Opt ; 60(6): 1623-1628, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33690498

RESUMO

A pulsed pseudo-thermal light source obtained using a rotating ground glass disk, spatial light modulator, or digital micromirror device is widely used in a ghost imaging (GI) lidar system. The property of the pulsed pseudothermal light field determines the reconstruction quality of the image in the GI lidar system, which depends on the pulse extinction ratio (PER) and pulse duty ratio. In this paper, pseudo-thermal light fields obtained at different pulse characteristics are given, taking into account the influence of the exposure time of the charge-coupled device (CCD) camera. The statistical distribution, contrast, and normalized intensity correlated function of the pseudo-thermal light field at different pulse characteristics are analyzed quantitatively for what we believe is the first time. Then the peak signal-to-noise ratio of the reconstructed image using a GI algorithm and a differential ghost imaging (DGI) algorithm is numerically simulated. The simulation results demonstrate that the PSNR decreases as the PER decreases, which is affected by the pulse duty ratio and the CCD exposure time. The deterioration of the reconstruction quality can be reduced by using a DGI algorithm or by shorting the exposure time of the CCD in the GI lidar system.

16.
Opt Lett ; 46(1): 54-57, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362014

RESUMO

Nonlinear optical vibrational spectroscopies are powerful experimental tools for inspecting material properties that are difficult to acquire otherwise. As ultrafast lasers used in such experiments are typically of much broader bandwidth than vibrational modes, narrowband filtering is usually essential, and the utility of laser energy is often highly inefficient. Here we introduce an experimental scheme to break this trade-off. A broadband beam is spatially chirped as it reaches the sample, and generates sum-frequency signals upon overlapping with another broadband, unchirped beam. A narrowband spectrum can then be retrieved from the spatially dispersed image of signals, with both broadband pulses fully utilized. The scheme is also readily employed as a spatially resolved spectroscopy technique without scanning, and can be easily extended to other wave-mixing experiments.

17.
Opt Express ; 28(25): 37284-37293, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379566

RESUMO

Ghost imaging (GI) usually requires a large number of samplings, which limit the performance especially when dealing with moving objects. We investigated a deep learning method for GI, and the results show that it can enhance the quality of images with the sampling rate even down to 3.7%. With a convolutional denoising auto-encoder network trained with numerical data, blurry images from few samplings can be denoised. Then those outputs are used to reconstruct both the trajectory and clear image of the moving object via cross-correlation based GI, with the number of required samplings reduced by two-thirds.

18.
J Chem Phys ; 153(8): 080903, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872884

RESUMO

Tuning of nonlinear optical responses is the essence to many photonics and optoelectronics applications. Due to the low-dimensionality and dispersion of massless Dirac Fermions, the nonlinear optical susceptibilities of graphene can be readily controlled via electrical gating. Based on the quantum interference between multi-photon transition pathways, the tuning mechanism of graphene nonlinearity is intrinsically different from most other systems. The phenomenon enables investigations into some nonlinear optical processes from fundamental regards. It also exhibits appealing features contrasting conventional materials, which can be desirable for novel device applications.

19.
Front Oncol ; 10: 1019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695675

RESUMO

Arsenic was recently identified as a pollutant that is a major cause of lung cancer. Since heparin-binding EGF-like growth factor (HB-EGF) was reported to be a promising therapeutic target for lung cancer, we investigated the role and mechanism of HB-EGF during arsenic-induced carcinogenesis and development of lung cancer. HB-EGF expression were upregulated in As-T cells, lung cancer cell lines, and in most lung cancer tissue samples; and HB-EGF activated the EGFR/p-ERK/HIF-1α pathway and induced VEGF by regulating HIF-1α transcription. HIF-1α transcriptional stimulation by HB-EGF was facilitated by PKM2 and played an important role in HB-EGF's effect on cells. An HB-EGF inhibitor(CRM197, cross-reacting material 197) slowed cell proliferation and inhibited migration of As-T and A549 cells, and inhibited tumor growth. PKM2 also played an important role in the proliferation and migration in As-T cells. The positive staining ratios of EGFR phosphorylation (Y1068) and PKM2 were significantly higher in most cases of lung cancer than in paired normal tumor-adjacent lung tissues; and HB-EGF expression levels strongly correlated with p-EGFR expression levels. Thus, HB-EGF drives arsenic-induced carcinogenesis, tumor growth, and lung cancer development via the EGFR/PKM2/HIF-1α pathway.

20.
J Phys Chem Lett ; 11(1): 243-248, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724400

RESUMO

The fundamental understanding of electrochemistry urges accurate knowledge of all interfacial properties at the molecular level, but the retrieval of such information is a real challenge. Optical spectroscopies facilitated by surface plasmon enhancement can shed light on this field, yet past studies relied on either highly inhomogeneous "hot spots" or planar plasmon modes with limited enhancement. Here we report an in situ sum-frequency vibrational spectroscopy scheme using plasmonic nanogratings, which enable strong, coherent surface plasmon excitation even on planar electrodes. With two classical reactions, the gold oxidation and pyridine adsorption in water, we demonstrate the realization of coherent vibrational spectroscopy in the strong absorption region, revealing the polar orientation and ordering of interfacial species that are crucial toward the mechanistic understanding of electrochemical phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...