Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38831650

RESUMO

In the past, there were no easily distinct and recognizable features as a guide for precise clinical and genetic diagnosis of cases with chromosome microdeletions involving 15q26 including CHD2,. The present study analysed the clinical data and collected venous blood samples from a pediatric patient and his healthy family members for DNA testing. The whole-exome sequencing was performed by the next-generation sequencing (NGS). Chromosomal copy-number variations were tested based on NGS. We present a review of all cases with chromosome microdeletions affecting CHD2. A novel de novo 5.82-Mb deletion at 15q25.3-15q26.1 including CHD2 was identified in our patient who is an 11.6-year-old boy. We first found surprising efficacy of lamotrigine in controlling intractable drop seizures in the individual. These cases have development delay, behavioural problems, epilepsy, variable multiple anomalies, etc. Phenotypes of individuals with deletions involving 15q26 including CHD2 are highly variable with regard to facial features and multiple developmental anomalies. We first found the special clinical entity of development delay, behavioural problems, epilepsy, variable skeletal and muscular anomalies, abnormalities of variable multiple systems and characteristic craniofacial phenotypes in patients with chromosome microdeletions involving CHD2. The larger deletions involving 15q26 including CHD2 tend to cause the classical phenotype. A distinctive craniofacial appearance of the classical phenotype is midface hypoplasia and perifacial protrusion.


Assuntos
Deleção Cromossômica , Animais , Humanos , Cromossomos Humanos Par 15/genética , Sequenciamento de Nucleotídeos em Larga Escala , Caracois Helix/genética , Masculino
2.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895463

RESUMO

The mosquito Aedes aegypti is a prominent vector for arboviruses, but the breadth of mosquito viruses that infects this specie is not fully understood. In the broadest global survey to date of over 200 Ae. aegypti small RNA samples, we detected viral small interfering RNAs (siRNAs) and Piwi interacting RNAs (piRNAs) arising from mosquito viruses. We confirmed that most academic laboratory colonies of Ae. aegypti lack persisting viruses, yet two commercial strains were infected by a novel tombus-like virus. Ae. aegypti from North to South American locations were also teeming with multiple insect viruses, with Anphevirus and a bunyavirus displaying geographical boundaries from the viral small RNA patterns. Asian Ae. aegypti small RNA patterns indicate infections by similar mosquito viruses from the Americas and reveal the first wild example of dengue virus infection generating viral small RNAs. African Ae. aegypti also contained various viral small RNAs including novel viruses only found in these African substrains. Intriguingly, viral long RNA patterns can differ from small RNA patterns, indicative of viral transcripts evading the mosquitoes' RNA interference (RNAi) machinery. To determine whether the viruses we discovered via small RNA sequencing were replicating and transmissible, we infected C6/36 and Aag2 cells with Ae. aegypti homogenates. Through blind passaging, we generated cell lines stably infected by these mosquito viruses which then generated abundant viral siRNAs and piRNAs that resemble the native mosquito viral small RNA patterns. This mosquito small RNA genomics approach augments surveillance approaches for emerging infectious diseases.

3.
PNAS Nexus ; 3(5): pgae188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38813522

RESUMO

C-type lectins (CTLs) are a family of carbohydrate-binding proteins and an important component of mosquito saliva. Although CTLs play key roles in immune activation and viral pathogenesis, little is known about their role in regulating dengue virus (DENV) infection and transmission. In this study, we established a homozygous CTL16 knockout Aedes aegypti mutant line using CRISPR/Cas9 to study the interaction between CTL16 and viruses in mosquito vectors. Furthermore, mouse experiments were conducted to confirm the transmission of DENV by CTL16-/- A. aegypti mutants. We found that CTL16 was mainly expressed in the medial lobe of the salivary glands (SGs) in female A. aegypti. CTL16 knockout increased DENV replication and accumulation in the SGs of female A. aegypti, suggesting that CTL16 plays an important role in DENV transmission. We also found a reduced expression of immunodeficiency and Janus kinase/signal transducer and activator of transcription pathway components correlated with increased DENV viral titer, infection rate, and transmission efficiency in the CTL16 mutant strain. The findings of this study provide insights not only for guiding future investigations on the influence of CTLs on immune responses in mosquitoes but also for developing novel mutants that can be used as vector control tools.

4.
Arch Microbiol ; 206(6): 279, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805051

RESUMO

Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.


Assuntos
Etanol , Fermentação , Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Pichia/metabolismo , Pichia/isolamento & purificação , Pichia/genética , Pichia/classificação , Etanol/metabolismo , Concentração de Íons de Hidrogênio , Café/microbiologia , Coffea/microbiologia , Temperatura , Sementes/microbiologia , Sulfeto de Hidrogênio/metabolismo
5.
Int J Biometeorol ; 68(1): 133-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37950095

RESUMO

Dengue is one of the world's most rapidly spreading mosquito-borne viral diseases. As it is found mostly in urban and semi-urban areas, urbanization and associated human activities that affect the environment and larval habitats could become risk factors (e.g., lane width, conditions of street ditches) for the spread of dengue. However, there are currently no systematic studies of micro-scale urbanization-based risk factors for the spread of dengue epidemics. We describe the study area, two micro-scale environmental risk factors associated with urbanization, and meteorological data. Since the observations involve spatial and temporal correlations, we also use some statistical methods for the analysis of spatial and spatial-temporal data for the relationship between urbanization and dengue. In this study, we analyzed data from Kaohsiung, a densely populated city in southern Taiwan, and found a positive correlation between environmental risk factors associated with urbanization (ditches positive for mosquito larvae and closely packed streets termed "dengue lanes") and clustering effects in dengue cases. The statistical analysis also revealed that the occurrence of positive ditches was significantly associated with that of dengue lanes in the study area. The relationship between climate variables and positive ditches was also analyzed in this paper, indicating a relationship between dengue and both rainfall and temperature, with temperature having a greater effect. Overall, this work is immediately relevant and applicable for policymakers in government, who will need to reduce these favorable habitats for vector-born disease spreaders and implement regulations for new urban constructions to thus reduce dengue spread in future outbreaks.


Assuntos
Dengue , Epidemias , Animais , Humanos , Urbanização , Dengue/epidemiologia , Cidades/epidemiologia , Fatores de Risco , Larva
6.
J Allergy Clin Immunol Glob ; 2(4): 100163, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781663

RESUMO

Background: Reinforcement of the immune-regulatory pathway is a feasible strategy for prevention and therapy of allergic asthma. The short-chain fatty acids (SCFAs) acetate, propionate, and butyrate are pleiotropic microbial fermentation products known to induce regulatory T (Treg) cells and exert an immune-regulatory effect. The cellular mechanism underlying SCFA immune regulation in asthma is not fully understood. Objective: We investigated the role of myeloid-derived suppressor cells (MDSCs) and Treg cells, the immune-regulatory cells of innate and adaptive origin, respectively, in SCFA-elicited protection against allergic airway inflammation. Methods: BALB/c mice were given SCFA-containing drinking water before being rendered asthmatic in response to ovalbumen. When indicated, mice were given a GR1-depleting antibody to investigate the function of MDSCs in allergic inflammation of the airways. MDSCs were sorted to examine their immunosuppressive function and interaction with T cells. Results: The mice receiving SCFAs developed less severe asthma that was accompanied by expansion of PMN-MDSCs and Treg cells. Mice depleted of PMN-MDSCs exhibited aggravated asthma, and the protective effect of SCFAs was abrogated after PMN-MDSC depletion. SCFAs were able to directly induce T-cell differentiation toward Treg cells. Additionally, we found that PMN-MDSCs enhanced Treg cell expansion in a cell contact-dependent manner. Whilst membrane-bound TGF-ß has been shown to induce Treg cell differentiation, we found that MDSCs upregulated surface expression of TGF-ß after coculture with T-cells and that MDSC-induced Treg cell differentiation was partially inhibited by TGF-ß blockage. Conclusions: Although previous studies revealed Treg cells as the effector mechanism of SCFA immune regulation, we found that SCFAs ameliorate allergic airway inflammation by relaying immune regulation, with sequential induction of PMN-MDSCs and Treg cells.

7.
BMC Pediatr ; 23(1): 480, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735378

RESUMO

BACKGROUND: Contiguous gene gain syndrome including entire ZEB2 may be a novel syndrome. In the past, there were no easily distinct and recognizable features as a guide for precise clinical and genetic diagnosis of the syndrome. CASE PRESENTATION: We report a novel case with the syndrome with a novel de novo 22.16 Mb duplication at 2q21.2-q24.1. The syndrome is characterized by multiple anomalies including the same typical craniofacial phenotype that is entirely different from Mowat-Wilson syndrome (MWS), and other quite similar features of MWS consisting of development delay, congenital heart disease, abdominal abnormalities, urogenital abnormalities, behavioral problems and so on, in which the distinctive craniofacial features can be more easily recognized. CONCLUSIONS: Contiguous gene gain syndrome including entire ZEB2 characterized with similar multiple congenital anomalies of MWS and the distinctive craniofacial features is mainly caused by large 2q22 repeats including ZEB2 leading to dominant singe ZEB2 gene gain mutation, which is recommended to be named "Liu-Liang-Chung" syndrome. We diagnose this novel syndrome to distinguish it from MWS. Some variable additional features in the syndrome including remarkable growth and development retardation and protruding ears were recognized for the first time.


Assuntos
Anormalidades Múltiplas , Doença de Hirschsprung , Humanos , Anormalidades Múltiplas/genética , Mutação , Doença de Hirschsprung/diagnóstico , Doença de Hirschsprung/genética , Fenótipo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética
8.
PLoS Negl Trop Dis ; 17(6): e0011346, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289665

RESUMO

Dengue fever is a vector-borne disease that has become a serious global public health problem over the past decade. An essential aspect of controlling and preventing mosquito-borne diseases is reduction of mosquito density. Through the process of urbanization, sewers (ditches) have become easy breeding sources of vector mosquitoes. In this study, we, for the first time, used unmanned ground vehicle systems (UGVs) to enter ditches in urban areas to observe vector mosquito ecology. We found traces of vector mosquitoes in ~20.7% of inspected ditches, suggesting that these constitute viable breeding sources of vector mosquitoes in urban areas. We also analyzed the average gravitrap catch of five administrative districts in Kaohsiung city from May to August 2018. The gravitrap indices of Nanzi and Fengshan districts were above the expected average (3.26), indicating that the vector mosquitoes density in these areas is high. Using the UGVs to detect positive ditches within the five districts followed by insecticide application generally yielded good control results. Further improving the high-resolution digital camera and spraying system of the UGVs may be able to effectively and instantly monitor vector mosquitoes and implement spraying controls. This approach may be suitable to solve the complex and difficult task of detecting mosquito breeding sources in urban ditches.


Assuntos
Aedes , Culicidae , Dengue , Animais , Mosquitos Vetores , Ecologia , Cidades , Urbanização , Controle de Mosquitos/métodos , Dengue/epidemiologia
9.
Front Bioeng Biotechnol ; 11: 1100968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741759

RESUMO

An essential aspect of controlling and preventing mosquito-borne diseases is to reduce mosquitoes that carry viruses. We designed a smart mosquito trap system to reduce the density of mosquito vectors and the spread of mosquito-borne diseases. This smart trap uses computer vision technology and deep learning networks to identify features of live Aedes aegypti and Culex quinquefasciatus in real-time. A unique mechanical design based on the rotation concept is also proposed and implemented to capture specific living mosquitoes into the corresponding chambers successfully. Moreover, this system is equipped with sensors to detect environmental data, such as CO2 concentration, temperature, and humidity. We successfully demonstrated the implementation of such a tool and paired it with a reliable capture mechanism for live mosquitos without destroying important morphological features. The neural network achieved 91.57% accuracy with test set images. When the trap prototype was applied in a tent, the accuracy rate in distinguishing live Ae. aegypti was 92%, with a capture rate reaching 44%. When the prototype was placed into a BG trap to produce a smart mosquito trap, it achieved a 97% recognition rate and a 67% catch rate when placed in the tent. In a simulated living room, the recognition and capture rates were 90% and 49%, respectively. This smart trap correctly differentiated between Cx. quinquefasciatus and Ae. aegypti mosquitoes, and may also help control mosquito-borne diseases and predict their possible outbreak.

10.
J Biomed Sci ; 30(1): 12, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803804

RESUMO

BACKGROUND: Zika virus (ZIKV) infection is clinically known to induce testicular swelling, termed orchitis, and potentially impact male sterility, but the underlying mechanisms remain unclear. Previous reports suggested that C-type lectins play important roles in mediating virus-induced inflammatory reactions and pathogenesis. We thus investigated whether C-type lectins modulate ZIKV-induced testicular damage. METHODS: C-type lectin domain family 5 member A (CLEC5A) knockout mice were generated in a STAT1-deficient immunocompromised background (denoted clec5a-/-stat1-/-) to enable testing of the role played by CLEC5A after ZIKV infection in a mosquito-to-mouse disease model. Following ZIKV infection, mice were subjected to an array of analyses to evaluate testicular damage, including ZIKV infectivity and neutrophil infiltration estimation via quantitative RT-PCR or histology and immunohistochemistry, inflammatory cytokine and testosterone detection, and spermatozoon counting. Furthermore, DNAX-activating proteins for 12 kDa (DAP12) knockout mice (dap12-/-stat1-/-) were generated and used to evaluate ZIKV infectivity, inflammation, and spermatozoa function in order to investigate the potential mechanisms engaged by CLEC5A. RESULTS: Compared to experiments conducted in ZIKV-infected stat1-/- mice, infected clec5a-/-stat1-/- mice showed reductions in testicular ZIKV titer, local inflammation and apoptosis in testis and epididymis, neutrophil invasion, and sperm count and motility. CLEC5A, a myeloid pattern recognition receptor, therefore appears involved in the pathogenesis of ZIKV-induced orchitis and oligospermia. Furthermore, DAP12 expression was found to be decreased in the testis and epididymis tissues of clec5a-/-stat1-/- mice. As for CLEC5A deficient mice, ZIKV-infected DAP12-deficient mice also showed reductions in testicular ZIKV titer and local inflammation, as well as improved spermatozoa function, as compared to controls. CLEC5A-associated DAP12 signaling appears to in part regulate ZIKV-induced testicular damage. CONCLUSIONS: Our analyses reveal a critical role for CLEC5A in ZIKV-induced proinflammatory responses, as CLEC5A enables leukocytes to infiltrate past the blood-testis barrier and induce testicular and epididymal tissue damage. CLEC5A is thus a potential therapeutic target for the prevention of injuries to male reproductive organs in ZIKV patients.


Assuntos
Orquite , Infecção por Zika virus , Zika virus , Humanos , Masculino , Camundongos , Animais , Sêmen/metabolismo , Camundongos Knockout , Inflamação/genética , Lectinas Tipo C/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
11.
Pharm Biol ; 60(1): 810-824, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35587996

RESUMO

CONTEXT: Moringa oleifera Lam. (Moringaceae) (MO) is an important food plant that has high nutritional and medical value. However, there is limited information on whether its seeds can improve sleep. OBJECTIVE: This study investigated the effects of MO seed ethanol extracts (EEMOS) on sleep activity improvement and examined the underlying mechanisms. MATERIALS AND METHODS: Male ICR mice were placed into six groups (n = 12) and treated as follows: Control (sodium carboxymethyl cellulose, 20 mL/kg), estazolam tablets (2 mg/kg), EEMOS (1, 2 g/kg) and kaempferol (1, 2 mg/kg). These samples were successively given intragastric for 14 d. Locomotor activity assay, pentobarbital-induced sleeping and pentetrazol-induced seizures tests were utilized to examine the sedative-hypnotic effects (SHE) of EEMOS. RESULTS: Compared with the control group, the results revealed that EEMOS (2 g/kg) and KA (2 mg/kg) possessed good SHE and could significantly elevate the levels of γ-aminobutyric acid and reduce the levels of glutamic acid in the mouse hypothalamus (p < 0.05). Moreover, SHE was blocked by picrotoxin, flumazenil and bicuculline (p < 0.05). EEMOS (2 g/kg) and KA (2 mg/kg) significantly upregulated the protein expression levels of glutamic acid decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice (p < 0.05), not affecting glutamic acid decarboxylase-67 (GAD67) and γ2-subunit expression levels (p > 0.05). Additionally, they cause a significant increase in Cl- influx in human cerebellar granule cells at a concentration of 8 µg/mL (p < 0.05). DISCUSSION AND CONCLUSIONS: These findings demonstrated that EEMOS could improve sleep by regulating GABAA-ergic systems, and encourage further clinical trials to treat insomnia.


Assuntos
Moringa oleifera , Pentobarbital , Animais , Etanol/farmacologia , Glutamato Descarboxilase/metabolismo , Hipnóticos e Sedativos/farmacologia , Quempferóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pentobarbital/farmacologia , Extratos Vegetais/farmacologia , Receptores de GABA-A/metabolismo , Sementes , Sono , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
12.
Parasit Vectors ; 15(1): 137, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449113

RESUMO

BACKGROUND: The primary disease vectors for dengue virus (DENV) transmission between humans are the mosquitoes Aedes aegypti and Aedes albopictus, with Ae. aegypti population size strongly correlated with DENV outbreaks. When a mosquito is infected with DENV, the virus migrates from the midgut to the salivary glands to complete the transmission cycle. How the virus crosses the hemocoel, resulting in systemic infection, is still unclear however. During viral infection and migration, the innate immune system is activated in defense. As part of cellular-mediated immunity, hemocytes are known to defend against bacteria and Plasmodium infection and may also participate in defending against DENV infection. Hemocytes are categorized into three cell types: prohemocytes, granulocytes, and oenocytoids. Here, we investigated which hemocytes can be infected by DENV and compare hemocyte infection between Ae. aegypti and Ae. albopictus. METHODS: Hemocytes were collected from Ae. aegypti and Ae. albopictus mosquitoes that were intrathoracically infected with DENV2-GFP. The collected hemocytes were then identified via Giemsa staining and examined microscopically for morphological differences and viral infection. RESULTS: All three types of hemocytes were infected by DENV, though the predominantly infected cell type was prohemocytes. In Ae. aegypti, the highest and lowest infection rates at 7 days post infection occurred in prohemocytes and granulocytes, respectively. Prohemocytes were also the primary infection target of DENV in Ae. albopictus, with similar infection rates across the other two hemocyte groups. The ratios of hemocyte composition did not differ significantly between non-infected and infected mosquitoes for either species. CONCLUSIONS: In this study, we showed that prohemocytes were the major type of hemocyte infected by DENV in both Ae. aegypti and Ae. albopictus. The infection rate of prohemocytes in Ae. albopictus was lower than that in Ae. aegypti, which may explain why systemic DENV infection in Ae. albopictus is less efficient than in Ae. aegypti and why Ae. albopictus is less correlated to dengue fever outbreaks. Future work in understanding the mechanisms behind these phenomena may help reduce arbovirus infection prevalence.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Mosquitos Vetores , Glândulas Salivares
13.
Front Public Health ; 10: 778736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372249

RESUMO

A key component of integrated vector management strategies is the efficient implementation of mosquito traps for surveillance and control. Numerous trap types have been created with distinct designs and capture mechanisms, but identification of the most effective trap type is critical for effective implementation. For dengue vector surveillance, previous studies have demonstrated that active traps utilizing CO2 attractant are more effective than passive traps for capturing Aedes mosquitoes. However, maintaining CO2 supply in traps is so labor intensive as to be likely unfeasible in crowded residential areas, and it is unclear how much more effective active traps lacking attractants are than purely passive traps. In this study, we analyzed Aedes capture data collected in 2019 from six urban areas in Kaohsiung City to compare Aedes mosquito catch rates between (passive) gravitraps and (active) fan-traps. The average gravitrap index (GI) and fan-trap index (FI) values were 0.68 and 3.39 respectively at peak catch times from June to August 2019, with consistently higher FI values calculated in all areas studied. We compared trap indices to reported cases of dengue fever and correlated them with weekly fluctuations in temperature and rainfall. We found that FI trends aligned more closely with case numbers and rainfall than GI values, supporting the use of fan-traps for Aedes mosquito surveillance and control as part of broader vector management strategies. Furthermore, combining fan-trap catch data with rapid testing for dengue infections may improve the early identification and prevention of future disease outbreaks.


Assuntos
Aedes , Controle de Mosquitos , Animais , Mosquitos Vetores , Taiwan
14.
PLoS Negl Trop Dis ; 16(1): e0010084, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015769

RESUMO

Dengue fever is one of the most severe viral diseases transmitted by Aedes mosquitoes, with traditional approaches of disease control proving insufficient to prevent significant disease burden. Release of Wolbachia-transinfected mosquitoes offers a promising alternative control methodologies; Wolbachia-transinfected female Aedes aegypti demonstrate reduced dengue virus transmission, whilst Wolbachia-transinfected males cause zygotic lethality when crossed with uninfected females, providing a method for suppressing mosquito populations. Although highly promising, the delicate nature of population control strategies and differences between local species populations means that controlled releases of Wolbachia-transinfected mosquitoes cannot be performed without extensive testing on specific local Ae. aegypti populations. In order to investigate the potential for using Wolbachia to suppress local Ae. aegypti populations in Taiwan, we performed lab-based and semi-field fitness trials. We first transinfected the Wolbachia strain wAlbB into a local Ae. aegypti population (wAlbB-Tw) and found no significant changes in lifespan, fecundity and fertility when compared to controls. In the laboratory, we found that as the proportion of released male mosquitoes carrying Wolbachia was increased, population suppression could reach up to 100%. Equivalent experiments in semi-field experiments found suppression rates of up to 70%. The release of different ratios of wAlbB-Tw males in the semi-field system provided an estimate of the optimal size of male releases. Our results indicate that wAlbB-Tw has significant potential for use in vector control strategies aimed at Ae. aegypti population suppression in Taiwan. Open field release trials are now necessary to confirm that wAlbB-Tw mediated suppression is feasible in natural environments.


Assuntos
Aedes/microbiologia , Dengue/prevenção & controle , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Wolbachia/metabolismo , Animais , Agentes de Controle Biológico/administração & dosagem , Dengue/transmissão , Vírus da Dengue/isolamento & purificação , Feminino , Masculino , Mosquitos Vetores/virologia , Taiwan , Wolbachia/classificação , Zigoto/microbiologia
16.
Sci Rep ; 11(1): 23865, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903766

RESUMO

The areas where dengue virus (DENV) is endemic have expanded rapidly, driven in part by the global spread of Aedes species, which act as disease vectors. DENV replicates in the mosquito midgut and is disseminated to the mosquito's salivary glands for amplification. Thus, blocking virus infection or replication in the tissues of the mosquito may be a viable strategy for reducing the incidence of DENV transmission to humans. Here we used the mariner Mos1 transposase to create an Aedes aegypti line that expresses virus-specific miRNA hairpins capable of blocking DENV replication. These microRNA are driven by the blood-meal-inducible carboxypeptidase A promoter or by the polyubiquitin promoter. The transgenic mosquitoes exhibited significantly lower infection rates and viral titers for most DENV serotypes 7 days after receiving an infectious blood meal. The treatment was also effective at day 14 post infection after a second blood meal had been administered. In viral transmission assay, we found there was significantly reduced transmission in these lines. These transgenic mosquitoes were effective in silencing most of the DENV genome; such an approach may be employed to control a dengue fever epidemic.


Assuntos
Aedes/virologia , Animais Geneticamente Modificados , Vírus da Dengue/patogenicidade , Dengue/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/virologia , Aedes/genética , Animais , Linhagem Celular , Cricetinae , Cricetulus , Dengue/transmissão , Vírus da Dengue/genética , Fibroblastos/virologia , Mosquitos Vetores/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sorogrupo , Transposases/genética , Transposases/metabolismo , Carga Viral
17.
Front Immunol ; 12: 670122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054842

RESUMO

Complement-like proteins in arthropods defend against invading pathogens in the early phases of infection. Thioester-containing proteins (TEPs), which exhibit high similarity to mammalian complement C3, are thought to play a key role in the innate immunity of arthropods. We identified and characterized anti-dengue virus (DENV) host factors, in particular complement-like proteins, in the mosquito Aedes aegypti. Our results indicate that TEP1 limits DENV infection in Ae. aegypti. We showed that TEP1 transcription is highly induced in mosquitoes following DENV infection. Silencing TEP1 resulted in the up-regulation of viral RNA and proteins. In addition, the production of infectious virus particles increased in the absence of TEP1. We generated a transgenic mosquito line with a TEP1 loss-of-function phenotype under a blood meal-inducible promoter. We showed that viral protein and titers increased in transgenic mosquitoes after an infectious blood meal. Interestingly, expression of transcription factor Rel2 and certain anti-microbial peptides (AMPs) were inhibited in transgenic mosquitoes. Overall, our results suggest that TEP1 regulates the immune response and consequently controls the replication of dengue virus in mosquitoes. This finding provides new insight into the molecular mechanisms of mosquito host factors in the regulation of DENV replication.


Assuntos
Aedes/virologia , Vírus da Dengue/patogenicidade , Dengue/prevenção & controle , Imunidade Inata , Proteínas de Insetos/metabolismo , Mosquitos Vetores , Aedes/genética , Aedes/imunologia , Aedes/metabolismo , Animais , Animais Geneticamente Modificados , Dengue/imunologia , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/crescimento & desenvolvimento , Vírus da Dengue/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Replicação Viral
18.
J Colloid Interface Sci ; 598: 419-429, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930746

RESUMO

The development of zinc-ion storage cathode materials for aqueous zinc-ion batteries (AZIBs) is a necessary step for the construction of large-scale electrochemical energy conversion and storage devices. Iron-doped alpha-manganese dioxide (α-MnO2) nanocomposites were achieved in this study via pre-intercalation of Fe3+ during the formation of α-MnO2 crystals. A polypyrrole (PPy) granular layer was fabricated on the surface of α-MnO2 using acid-catalyzed polymerization of pyrroles. The pre-intercalation of Fe3+ effectively enlarges the lattice spacing of α-MnO2 and consequently decreases the hindrance for Zn2+ insertion/extraction in the iron-doped α-MnO2 coated by PPy (Fe/α-MnO2@PPy) composite. Meanwhile, the PPy buffer layer can ameliorate electron and ion conductivity and prevent dissolution of α-MnO2during the charge/discharge process. This unique structure makes the Fe/α-MnO2@PPy composite an efficient zinc-ion storage cathode for AZIBs. The targeted Fe/α-MnO2@PPy cathode achieves superior performance with reversible specific capacity (270 mA h g-1 at 100 mA g-1) and exhibits highdiffusioncoefficientof 10-10-10-14 cm-2 s-1. Therefore, a feasible approach is implemented on advanced electrode materials using in AZIBs for practical applications.

19.
Front Immunol ; 12: 640367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767710

RESUMO

The C-type lectins, one family of lectins featuring carbohydrate binding domains which participate in a variety of bioprocesses in both humans and mosquitoes, including immune response, are known to target DENV. A human C-type lectin protein CLEC18A in particular shows extensive glycan binding abilities and correlates with type-I interferon expression, making CLEC18A a potential player in innate immune responses to DENV infection; this potential may provide additional regulatory point in improving mosquito immunity. Here, we established for the first time a transgenic Aedes aegypti line that expresses human CLEC18A. This expression enhanced the Toll immune pathway responses to DENV infection. Furthermore, viral genome and virus titers were reduced by 70% in the midgut of transgenic mosquitoes. We found significant changes in the composition of the midgut microbiome in CLEC18A expressing mosquitoes, which may result from the Toll pathway enhancement and contribute to DENV inhibition. Transgenic mosquito lines offer a compelling option for studying DENV pathogenesis, and our analyses indicate that modifying the mosquito immune system via expression of a human immune gene can significantly reduce DENV infection.


Assuntos
Aedes/imunologia , Aedes/virologia , Animais Geneticamente Modificados , Dengue/imunologia , Lectinas Tipo C/imunologia , Aedes/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Vírus da Dengue , Modelos Animais de Doenças , Humanos , Mosquitos Vetores/genética , Mosquitos Vetores/imunologia , Mosquitos Vetores/virologia
20.
Viruses ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003584

RESUMO

Dengue virus (DENV), the pathogen that causes dengue fever, is mainly transmitted by Aedes aegypti. Surveillance of infected mosquitoes is a major component of integrated mosquito control methods for reducing the risk of vector-born disease outbreaks. However, a specialized rapid test for DENV detection in mosquitoes is not currently available. Utilizing immunoblotting, we found that the secretion of NS1 from both a DENV-infected mosquito cell line and mosquito bodies was below the detection threshold. However, when Triton X-100 was used to lyse infected mosquitoes, intracellular NS1 was released, and could then be effectively detected by the NS1 rapid test. The distribution of DENV NS1 in intrathoracically infected mosquitoes was different from that of orally infected mosquitoes. Next, we performed sensitivity tests by bisecting mosquitoes longitudinally; one half of each mosquito was subjected to the NS1 rapid test while the other half was used for qPCR confirmation. This modified test had a sensitivity of nearly 90% from five days post-infection onwards, while DENV had escaped from the midgut barrier. This adapted test offers a valuable, easy-to-use tool for mosquito surveillance, which is a crucial component of DENV disease control.


Assuntos
Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Mosquitos Vetores/virologia , Proteínas não Estruturais Virais/genética , Aedes/virologia , Animais , Linhagem Celular , Chlorocebus aethiops , Dengue/virologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...