Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174538, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977090

RESUMO

Arsenic (As) is recognized as a potent environmental contaminant associated with bladder carcinogenesis. However, its molecular mechanism remains unclear. Metabolic reprogramming is one of the hallmarks of cancer and is as a central feature of malignancy. Here, we performed the study of cross-talk between the mammalian target of rapamycin complex 1 (mTORC1)/ Hypoxia-inducible factor 1 alpha (HIF-1α) pathway and aerobic glycolysis in promoting the proliferation and migration of bladder epithelial cells treated by arsenic in vivo and in vitro. We demonstrated that arsenite promoted N-methyl-N-nitrosourea (MNU)-induced tumor formation in the bladder of rats and the malignant behavior of human ureteral epithelial (SV-HUC-1) cell. We found that arsenite positively regulated the mTORC1/HIF-1α pathway through glucose transporter protein 1 (GLUT1), which involved in the malignant progression of bladder epithelial cells relying on glycolysis. In addition, pyruvate kinase M2 (PKM2) increased by arsenite reduced the protein expressions of succinate dehydrogenase (SDH) and fumarate hydratase (FH), leading to the accumulation of tumor metabolites of succinate and fumarate. Moreover, heat shock protein (HSP)90, functioning as a chaperone protein, stabilized PKM2 and thereby regulated the proliferation and aerobic glycolysis in arsenite treated SV-HUC-1 cells. Taken together, these results provide new insights into mTORC1/HIF-1α and PKM2 networks as critical molecular targets that contribute to the arsenic-induced malignant progression of bladder epithelial cells.

2.
Ecotoxicol Environ Saf ; 244: 114034, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063615

RESUMO

2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) is one of the most important polybrominated diphenyl ethers (PBDEs) congeners, and epidemiological studies have shown that it can cause adverse pregnancy outcomes. The aim of our study was to investigate the role of placental injury in BDE-47-induced adverse pregnancy outcomes through in vivo and in vitro models. From day 0.5 to day 16.5 of pregnancy of ICR mice, BDE-47 oral doses of 0, 25, 50 and 100 mg/kg/day were administered. Immunohistochemical staining found that BDE-47 inhibited the expression of CD34 in mouse placenta, and ELISA results showed that BDE-47 reduced the levels of VEGF and PlGF in the serum of pregnant mice. Western blot assays found that the expression levels of VEGF-A and invasion-related factors were decreased in the placentas of BDE-47-treated group, which indicated that BDE-47 could impair placental angiogenesis. Furthermore, BDE-47 inhibited proliferation, increased apoptosis and autophagy, and activated p38 MAPK signaling pathway in mouse placental tissue. In vitro, HTR-8/SVneo cells were treated with 0, 5, 10, 20 µM BDE-47 for 24 h. Wound healing assays and Transwell assays showed that BDE-47 inhibited the migration and invasion ability of HTR-8/SVneo cells. We also found that BDE-47 inhibited the proliferation of HTR-8/SVneo cells and increased apoptosis and autophagy. BDE-47 activated p38 MAPK signaling pathway in HTR-8/SVneo cells, and inhibition of p38 MAPK signaling pathway in HTR-8/SVneo cells restored the effects caused by BDE-47. In conclusion, BDE-47 impairs placental angiogenesis by inhibiting cell migration and invasion, and induces placental toxicity by inhibiting proliferation, increasing apoptosis and autophagy. In vitro, activation of p38 MAPK signaling pathway is involved in the processes of placental injury by BDE-47.


Assuntos
Éteres Difenil Halogenados , Placenta , Animais , Éter/metabolismo , Éter/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos ICR , Placenta/metabolismo , Gravidez , Transdução de Sinais , Trofoblastos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Toxicol Lett ; 345: 1-11, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781819

RESUMO

Arsenic is an environmental contaminant, which is widely distributed in soil, air, and water. There is sufficient evidence to indicate that arsenic increases the risk of bladder cancer in humans. However, its underlying mechanisms remain elusive. Glutamine (Gln) has multiple functions that promote carcinogenesis. Indeed, Gln transporters on cancer cells surface are often upregulated. Elevated expression levels of Alanine, serine, cysteine-preferring transporter 2 (ASCT2; SLC1A5) have been reported in many types of human tumors. This study characterized the role of SLC1A5 in cell proliferation in arsenite-treated cells. In short-term experiments, SV-40 immortalized human uroepithelial (SV-HUC-1) cells were treated with Sodium arsenite (NaAsO2) (0, 0.5, 1, 2, 4, 8 µM) for 24 h. In long-term experiments, SV-HUC-1 cells were exposed to 0.5 µM NaAsO2 for 40 weeks. In both short-term and long-term experiments, arsenite increased expression of SLC1A5 by 1.89-fold and 2.25-fold, respectively. Arsenite increased Gln consumption of SV-HUC-1 cells, and Gln starvation inhibited cell proliferation in long-term arsenite-treated cells. Importantly, inhibiting SLC1A5 blocked cell proliferation by downregulating mTORC1 in long-term arsenite-treated cells. Moreover, SLC1A5 regulated mTORC1 in an αKG-dependent manner. Our results suggest that SLC1A5 plays an important role in cell proliferation of arsenite-treated SV-HUC-1 cells.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Arsenitos/toxicidade , Proliferação de Células/efeitos dos fármacos , Glutamina/deficiência , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Compostos de Sódio/toxicidade , Urotélio/efeitos dos fármacos , Sistema ASC de Transporte de Aminoácidos/genética , Linhagem Celular , Regulação para Baixo , Humanos , Ácidos Cetoglutáricos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Urotélio/enzimologia , Urotélio/patologia
4.
Ecotoxicol Environ Saf ; 208: 111693, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396024

RESUMO

Arsenic is a natural chemical element that is strongly associated with bladder cancer. Understanding the underlying mechanisms behind the association between arsenic and bladder cancer as well as identifying effective preventive interventions will help reduce the incidence and mortality of this disease. The epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties play key roles in cancer development and progression. Here, we reported that chronic exposure to arsenic resulted in EMT and increased levels of the CSC marker CD44 in human uroepithelial cells. Furthermore, IL-8 promoted a mesenchymal phenotype and upregulated CD44 by activating the ERK, AKT and STAT3 signaling. Phosphorylation of the human epidermal growth factor receptor 2 (HER2) was key for arsenic-induced IL-8 overexpression and depended on the simultaneous activation of the MAPK, JNK, PI3K/AKT and GSK3ß signaling pathways. We also found that genistein inhibited arsenic-induced HER2 phosphorylation and downregulated its downstream signaling pathways, thereby inhibiting progression of EMT, and reducing CD44 expression levels. These results demonstrate that the HER2/IL-8 axis is related to the acquisition of an EMT phenotype and CSCs in arsenic-treated cells. The inhibitory effects of genistein on EMT and CSCs provide a new perspective for the intervention and potential chemotherapy against arsenic-induced bladder cancer.


Assuntos
Arsênio/toxicidade , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Interleucina-8/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptor ErbB-2/genética , Bexiga Urinária/metabolismo , Arsênio/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/imunologia , Humanos , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bexiga Urinária/citologia
5.
Sci Total Environ ; 753: 141962, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32890875

RESUMO

Arsenic (As) is a known human carcinogen with a hitherto unknown mechanism of action. Dimethylarsinic acid (DMAV) is a methylated metabolite of arsenicals found in most mammals, and long-term exposure to DMAV can lead to bladder cancer in rats. Human epidermal growth factor receptor 2 (HER2) is an oncogenic factor that is overexpressed in bladder cancer, but its role in the initiation and progression of As-induced bladder cancer has not been elucidated. We found that HER2 was up-regulated in human uroepithelial cells treated with arsenite as well as in the bladder tissues of DMAV-exposed rats. HER2 overexpression correlated to increased cell proliferation, epithelial-to-mesenchymal transition (EMT), migration and angiogenesis in vitro. The anti-HER2 monoclonal antibody trastuzumab significantly decreased serum vascular endothelial-derived growth factor (VEGF) levels and that of proliferation-related proteins in the bladder tissues of DMAV-exposed rats. Furthermore, inhibition of HER2, as well as that of the MAPK, AKT and STAT3 pathways, attenuated arsenite-induced proliferation, migration and angiogenesis of human uroepithelial cells, and increased apoptosis rates in vitro. These findings indicate that HER2 mediates the oncogenic effects of As on bladder epithelial cells by activating the MAPK, PI3K/AKT and Src/STAT3 signaling pathways, and is therefore a promising biomarker.


Assuntos
Arsênio , Animais , Arsênio/toxicidade , Proliferação de Células , Células Epiteliais , Humanos , Fosfatidilinositol 3-Quinases , Ratos , Receptor ErbB-2 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...